Birdhouse Documentation
Release 0.7.0

Birdhouse

Feb 18, 2021

CONTENTS

Overview 3
1.1 Documentation StIUCLUIE v v v v v e 3
1.2 Whatis WPS? e e e e e e 4
1.3 WPSUseCase o it i e e e e e e e e e e e e e 5
Architecture 7
2.1 Framework Structure L e e e e e 7
2.2 Client Side COMPONENLS v v vt vt e e it e e e e e e e e e e e e e e 8
2.3 Server Side COMPONENLS . . . v v v v v v i e 8
2.4 Filesand Folders e e 9
Guidelines 11
3.1 General Guidelines: e e e e e e e e e 11
3.2 FAIR Guiding Principles e 12
3.3 Software development 13
34 Settingupanew WPS e 16
3.5 WPSdesign L e e 16
3.6 Settingupanew WPS . . . L e e e e e e 16
37 0 SEIVET SEIUP « . v v v o v e 19
3.8 References e e e e e e 19
Tutorials 21
4.1 Climate Data with Phyton o . e e e e e 21
4.2 Getting started with PYWPS oo 83
4.3 Callinga Service (birdy) 126
4.4 BasicUSage i e e e 134
45 Demo e e e e e e e e e e e 134
4.6 WPS general usageo e e e e e e e e e e 134
47 Climate Indices (finch): e e e e e 139
4.8 Hydrological models (raven): e 139
4.9 Server adminiStration o it e 139
410 PyWPS wWithR . . . o . e e e e e e e 146
Publications 149
5.1 Talksand articles L e e e e e e e e 149
5.2 References e e e e e e e e e e e 150
Project examples 151
6.1 PAVICS . . . e e e e e e 151
6.2 COPERNICUS e e e e e e e e e e e e e 156
6.3 OGC-Testbeds o v v i e e e e e e e e 156

7 Ideas 157

7.1 PyWPS Profiles e e e e e e 157
8 Release Notes 159
8.1 Niamey (October 2020, vO.10.0) o o e e e e e e e e e e 159
8.2 Oxford (April 2020, v0.9.0) e e e e e e 160
8.3 Bucharest (October 2019, v0.8.0) e e e 160
8.4 San Francisco (May 2019, v0.7.0) o . e e e e 161
8.5 Washington (December 2018, v0.6.1) 162
8.6 Dar es Salaam (September 2018, v0.6.0) e 163
8.7 Montréal (March 2018, vO.5.0) e e e e e 163
8.8 Bonn (August 2016, v0.4.0) L e e e e e e 164
8.9 Paris (October 2015, v0.3.0) e e e e e e e e e e e e 164
8.10 Paris (September 2014, v0.2.0) L. e e 165
8.11 Helsinki (May 2014, vO.1.2) L L e e e e 165
8.12 Vienna (April 2014, vO.1.1) e e e e e e 165
8.13 Hamburg (December 2013, vO.1.0) o e e 165
9 Communication 167
0.1 Chat-rOOM o vt e e e e e e e e e e e e e e 167
0.2 MEEUNZS . .« « v v v e 167
0.3 BlOg-post o e e e 167
9.4 Newsletter e e e e e e e e 168
0.5 WIKi . . o e e e e e e e 168
10 License 169
11 Glossary 171
Bibliography 175
Index 177

Birdhouse Documentation, Release 0.7.0

docs

license

license

L .

: I I

s -
|

Birdhouse is a GitHub organization comprised of Python projects related to Web Processing Services to support
climate data analysis.

The full documentation is available on ReadTheDocs and in the docs/ folder.

CONTENTS 1

http://birdhouse.readthedocs.io/en/latest/?badge=latest
https://travis-ci.org/bird-house/birdhouse-docs
https://github.com/bird-house/birdhouse-docs/blob/master/LICENSE.txt
https://gitter.im/bird-house/birdhouse?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
http://geoprocessing.info/wpsdoc/
http://birdhouse.readthedocs.io/en/latest/

Birdhouse Documentation, Release 0.7.0

2 CONTENTS

CHAPTER
ONE

OVERVIEW

* Documentation structure

e What is WPS?
e WPS Use Case

Birdhouse is a collaborative project open for the community to participate. It is a software framework containing a
collection of Web Processing Service (WPS). The deployed algorithms are focusing on Earth Systems and environ-
mental data processing with the philosophy of streamlining the software development and deployment. By supporting
climate, earth observation and biodiversity data and processes, Birdhouse can be used in a wide array of Earth sciences
projects and workflows. The core benefit of this project is to allow the seamless use of climate services developed
by a diverse network of national meteorological offices, regional climate service providers, academics, not-for-profit
research centers and private industry. As governments move toward open-data policies, there will be a need for an-
alytical services that extract value out of the deluge of information. Using an interoperable software architecture,
institutions can provide both data and services allowing users to process the data remotely from a laptop, instead of
having to acquire and maintain large storage infrastructures.

1.1 Documentation structure

The birdhouse documentation reflects the fact that it is an assemblage of independent software components. It’s
therefore organized according to the birdhouse framework structure. Birdhouse is being used by international working
groups who deploy subsets of components tailored to their user base. The following graph shows an overview of the
documentation’s organization:

http://geoprocessing.info/wpsdoc/

Birdhouse Documentation, Release 0.7.0

Birdhouse Overview

General Documentation
Introduction to principles
Projects

Administration guides
Developer guides

Tutorials
uckie cutter Client components - Utilities -
) Documentations Documentations
Dosumentation
template Descriptions Descriptions
User guides User guides
S Tutorials Tutorials
WPS Services - || nstallation Installation
Documentations
Process
descriptions
User guides
Tutorials
Installation

1.2 What is WPS?

Geographic Information Processing for the Web The Web Processing Service (WPS) offers a simple web-based
method of finding, accessing, and using all kinds of calculations and models.

A WPS is a technical solution (WPS Concepts) in which processes are hosted on a server and accessed over the web
(Fig. 1). These processes con- form to a standardized format, ensuring that they follow the principle of reusable
design: they can be instantiated multiple times for different input arguments or data sources, customized following
the same structure to handle new inputs, and are modular, hence can be combined to form new processes. In addition,
a WPS can be installed close to the data to enable processing directly out of the archive. A WPS can also be linked
to a theoretically limit- less combination of several other WPSs, or generally OpenGIS Web Services (OWS). Our
understanding of process is used in the same sense as in the OGC standard: ’for any algorithm, calculation or model
that either generates new data or trans- forms some input data into output data’. A submitted process is a job. A service
provides a collection of processes containing scientific methods that focus on climate impact and extreme weather
events. A combination of processes is called a workflow, and a collection of WPS-related software compartments is
a framework. WPS divides the operation into server and client side, with appropriate security in between to avoid
misuse.

4 Chapter 1. Overview

Birdhouse Documentation, Release 0.7.0

high performance environment (low internet bandwidth)
Server - Side Client - Side
ﬁ.‘,loud
Services Submit Job
Data Analyses
Data Data Monitor
Archives Visualisation
Expert
Result Archive User
_ Result

Note: Read the documentation on Geographic Information Processing for the Web

1.3 WPS Use Case

Todo: needs to be updated.

A user runs WPS processes remotely on a machine with direct access to climate data archives.

Code defining
functionality,
workflows,
processing tasks

1.3. WPS Use Case 5

http://geoprocessing.info/wpsdoc/

Birdhouse Documentation, Release 0.7.0

6 Chapter 1. Overview

CHAPTER
TWO

ARCHITECTURE

» Framework structure
* Client Side Components

» Server Side Components

e Files and Folders

Birdhouse is organized in separate stand-alone software components. Most components are named after birds, which
gives the project its name birdhouse. The components can be categorized into Client Side Components, i.e. tools for
end-users, and Server Side Components, i.e. back-end elements of the architecture.

2.1 Framework structure

There are several WPS services. Malleefowl is the main one for the Phoenix client. Malleefowl is used to search,
download (with caching) ESGF data and to retrieve certificates. Malleefowl has also a workflow engine (dispel4py) to
chain WPS processes.

The results of the WPS processes are stored on the file system and are accessible via URL (with a token id). Results
can be shown on a Map using a Web Mapping Service (ncWMS, adagucserver). The PyCSW Catalog Service is used
to register WPS services and also to publish WPS outputs. Published results in the PyCSW can also used as input
source for processes again.

ESGF is currently the main climate data resource (but more resources are possible). ESGF Solr-index is used to find
ESGF data. The ESGF identity provider with OpenIDs and X509 certificate is used for authentication.

WPS serivces can be accessed through web-applications like Phoenix or from scripts.

http://malleefowl.readthedocs.io/en/latest/
http://pyramid-phoenix.readthedocs.io/en/latest/
https://github.com/dispel4py/dispel4py
https://esgf.llnl.gov/

Birdhouse Documentation, Release 0.7.0

WPS Set_:urity [Z!eployment
Pelican Twitcher Ansible, Docker &
ESGF Conda
Nodes i s
] Malleefowl
Climate WPS WPS
Model Data = =
Template Flyingpigeon .
Cookiecutter WPS s
) Emu Nootebooks
WPS
Blackswan 0 J
WPS Ve
Data ESMValTool [\yps
Cache Finch WPS - (?UI
Archive WPS | LTI
""'f: Raven WPS \ J
: i Kingfisher —
... S . ¥ F
frommmnmm 3 creafeneannas wps Function Client
Other li .-é’ pro:;‘:;g Hummingbird Lib:‘arﬁ Birdy
: Archives £].---" eggshe
Climate or :: Brrmeasenaa et Ty
: - climat -
: non da.t:a.ll'l'liﬂ. e EE birdfeed Web
: i % I - Result Mapping
L S 3 - Service
H 3 Archive
; # . /
Note: See also the Publications and Presentations for more information and details.

2.2

Client Side Components

e Phoenix: a web-based WPS client with ESGF data access

e Birdy: a WPS command line client and native library

2.3

Server Side Components

WPS services for climate data analysis:

* Emu: some example WPS processes for demo

* Flyingpigeon: Testbed for new process development

e Black Swan: services for the extreme weather event assessments

* Hummingbird: provides cdo and compliance-checker as a service

¢ Finch: services for climate indices calculation

Chapter 2. Architecture

http://pyramid-phoenix.readthedocs.io/en/latest/
http://birdy.readthedocs.io/en/latest/
http://emu.readthedocs.io/en/latest/
http://flyingpigeon.readthedocs.io/en/latest/
https://github.com/bird-house/blackswan
http://birdhouse-hummingbird.readthedocs.io/en/latest/
https://github.com/bird-house/finch

Birdhouse Documentation, Release 0.7.0

e Pelican: Supporting ESGF compute API

» Kingfisher: Services for Earth-Observation data analysis
Many climate analysis operations are implemented using OpenClimateGIS including the python package icclim.
Supporting Services and libraries:

e Twitcher: an OWS Security Proxy

e Malleefowl: access to climate data (ESGF, ...) as a service

e Eggshell: provides common functionallity for Birdhouse WPS services

You can find the source code of all birdhouse components on GitHub. Docker images with birdhouse components are
on Docker Hub

2.4 Files and Folders

This is an overview of folder structure and important files for administration of a server-side birdhouse ecosystem.

It is recommended to clone the separated WPS services (birds) into one top level folder like:

$ ~/birdhouse/emu

$ ~/birdhouse/pyramid-pheonix
$ ~/birdhouse/finch

$ ~/birdhouse/malleefowl

The dependencies of each bird is deployed as conda environment and per default located at:

$ ~/.conda/envs/

The environment of a bird is defined in ./{birdname }/environment.yml.

Process descriptions are placed in ./{birdname}/{birdname}/processes/ while modules designed and used for the ser-

vice are situated in ./{birdname}/{birdname}/. Here are also static data like shapefiles, templates or additional data
used by the processes.

$./{birdname}/{birdname}/data/shapefiles
$./{birdname}/{birdname}/templates

Each birdhouse compartment has a documentation build with Sphinx and the corresponding files are situated in

$./{birdname}/docs

When running a service, files and folders for input data, result storage, file cache of simply logfiles are defined in the
/{birdname}/.config.cfg. Default configuration is defined in ./{birdname }/{ birdname }/default.cfg as well as an example
can be found in ~./{birdnamej/etc. For more options of configuration see the pywps configuration instructions

For development and deployment testing the installations be checked running tests (make test). Test descriptions
testdata are situated in:

$./{birdname}/tests
S ./{birdname}/tests/testdata

2.4. Files and Folders 9

https://github.com/bird-house/pelican
https://kingfisher.readthedocs.io/en/latest/
https://www.earthsystemcog.org/projects/openclimategis/
http://icclim.readthedocs.io/en/latest/
http://twitcher.readthedocs.io/en/latest/
http://malleefowl.readthedocs.io/en/latest/
https://eggshell.readthedocs.io/en/latest/
https://github.com/bird-house
https://hub.docker.com/r/birdhouse
https://pywps.readthedocs.io/en/master/configuration.html

Birdhouse Documentation, Release 0.7.0

10 Chapter 2. Architecture

CHAPTER
THREE

GUIDELINES

Note: Code of Conduct: Before we start please be aware that contributors to this project are expected to act
respectfully toward others in accordance with the OSGeo Code of Conduct.

3.1 General Guidelines:

3.1.1 Best practices in FOSS development

e It is agreed that the development guidelines should remain very simple. The typical contribution workflow is
to start a branch from the current master (in a fork for external developers) and the pull request is also made to
master.

e New features must have documentation and tests. Some PEP8 requirements (with exceptions, which are de-
scribed by project) must be followed.

* A need for a tutorial or template on how to properly log events inside a WPS and how to write WPS tests is
identified.

* The release cycle for birdhouse is roughly 2-3 months, coinciding with the video conference meetings.

* There is a suggestion to clean up repositories that have a lot of obsolete branches. Deleted branches still maintain
their commits in the history if they were merged at some point.

* It is strongly suggested that before creating a feature branch to work on, there should be an issue created to
explain & track what is being done for that feature.

3.1.2 Contribution Workflow

The Birdhouse project openly welcomes contributions (bug reports, bug fixes, code enhancements/features, etc.). This
document will outline some guidelines on contributing to birdhouse. As well, the birdhouse Communication is a great
place to get an idea of how to connect and participate in birdhouse community and development where everybody is
welcome to rise questions and discussions.

11

http://www.osgeo.org/code_of_conduct

Birdhouse Documentation, Release 0.7.0

3.2 FAIR Guiding Principles

Climate datasets rapidly grow in volume and complexity and creating climate products requires high bandwidth,
massive storage and large compute resources. For some regions, low bandwidth constitutes a real obstacle to devel-
oping climate services. Data volume also hinders reproducibility because very few institutions have the means to
archive original data sets over the long term. Moreover, typical climate products often aggregate multiple sources
of information, yet mechanisms to systematically track and document the provenance of all these data are only
emerging. So although there is a general consensus that climate information should follow the FAIR Principles
[WDA+16][MNV+17], that is be findable, accessible, interoperable, and reusable, a number of obstacles hinder
progress. The following principles can help set up efficient climate services information systems, and show how the
four FAIR Principles not only apply to data, but also to analytical processes.

3.2.1 Findable

Findable is the basic requirement for data and product usage and already an difficult obstacle with time intensive work
for the data provider ensuring find-able data. On the production level finding algorithms requires open source software
with intensive documentation.

Finding data:

Finding data requires a structured data repository and if possible an assigning of a globally unique and eternally
persistent identifier (like a DOI or Handle), describing the data with rich metadata, and making sure it is find-able
through discovery portals of search clients. It is recommended to establish data repository collecting and managing
core input and output data enabling coordinated provisioning and sharing of data focusing on sustainable storage and
management of core data collections. Depending on data importance a certified long-term archive can be managed.
The identification of core data collections to be managed in centralized repositories might be realized with e.g the
Research Data Management Organiser (RDMO) tool. https://rdmorganiser.github.io/

Finding algorithms:

In free and open source for geospatial (FOSS4G) developments workflows, independent developer groups are col-
laborating in a win-win situation and ensuring a high-quality software product Bahamdain2015. Public repositories
enabling a work efficient participating and knowledge sharing approach [Thol0]. A high certainty and quality of sci-
entific evidence is needed for information in a juridical context to regulate the conflict between economic development
and environmental protection Brown2019. Therefor backend solutions to provide climate information for decision
makers, need to be as much as possible ‘error free’. The challenge of high-quality software solutions is illustrated with
Linus’s law that “given enough eyeballs, all bugs are shallow”. Raymond2001.

3.2.2 Accessible

Access to data:

For data users, the prevailing modus operandi has traditionally been to download raw data locally to conduct analyses.
As data volume grows, bandwidth and local storage capacity limits the type of science that individual scientists can
perform.

Access to algorithms:

A high certainty and quality of scientific evidence is needed for information in a juridical context to regulate the con-
flict between economic development and environmental protection Brown2019. Therefor backend solutions to provide
climate information for decision makers, need to be as much as possible ‘error free’. The challenge of high-quality
software solutions is illustrated with Linus’s law that “given enough eyeballs, all bugs are shallow”. Raymond2001. In
free and open source for geospatial (FOSS4G) developments workflows, independent developer groups are collaborat-
ing in a win-win situation and ensuring a high-quality software product Bahamdain2015. Public repositories enabling
a work efficient participating and knowledge sharing approach [Tho10].

12 Chapter 3. Guidelines

https://rdmorganiser.github.io/

Birdhouse Documentation, Release 0.7.0

3.2.3 Interoperable

Following the UNGGIM recommendations (2020) about ‘Implementation and adoption of standards for
the global geospatial information community’ climate data should be organized following this UNGIM
recommendations. (http:/ggim.un.org/meetings/GGIM-committee/10th-Session/documents/E-C.20-2020-33-Add_
I-Implementation-and- Adoption-of-Standards-21Jul2020.pdf) Interoperabillity needs to be respected on two levels:

Interoperable data :
following the conventions regarding metadata ...
Interoperable structures:

The OGC standardisation also enables communication between climate services information systems services.

3.2.4 Reusabillity

Reusabillity is a major aspect to avoid duplication of work and to foster the dynamique of providing high quality
products.

Reusable data:

The data should maintain its initial richness. The description of essential, recommended, and optional metadata
elements should be machine processable and verifiable, use should be easy and data should be citable to sustain data
sharing and recognize the value of data. Result output data from one service can be post-processed by another service
where other component are provided.

Reusable algorithms:

Contrary to running analysis code on a local machine, it is recommended to use remote services have no direct control
on the software they are running. The server’s maintainer essentially decides when software and services are upgraded,
meaning that within the time a scientist performs initial exploration and produces the final version of a figure for a
paper, remote-services might have slightly changed or have been retired.

Reproducabillity:

This implies that reproducabillity results might not be easily reproducible if earlier versions of services are not avail-
able anymore. This puts an additional burden on scientists to carefully monitor the version of all the remote services
used in the analysis to be able to explain discrepancies between results. Similar issues occur with data versions. If
a scientist used version 1 for an analysis, there is no guarantee the source data will be archived over the long term if
it has been superseded by version 2. In practice, climate services use ensembles of simulations, meaning that typi-
cal climate products aggregate hundreds or thousands of files, whose versions should ideally be tracked up until the
final graphic or table. This capability to uniquely identify simulation files, errata and updates is available in CMIP6
[SL17][WLTKI13], but it is the responsibility of climate service providers to embed this information into the products
they develop.

3.3 Software development

e Source code
e Git contribution

e Issue tracker

* Code Style

3.3. Software development 13

http://ggim.un.org/meetings/GGIM-committee/10th-Session/documents/E-C.20-2020-33-Add_1-Implementation-and-Adoption-of-Standards-21Jul2020.pdf
http://ggim.un.org/meetings/GGIM-committee/10th-Session/documents/E-C.20-2020-33-Add_1-Implementation-and-Adoption-of-Standards-21Jul2020.pdf

Birdhouse Documentation, Release 0.7.0

e Release Notes and Versions I

Here are some basic guides to smoothly contribute to birdhouse:

3.3.1 Source code

The source code of all birdhouse components is available on GitHub. Respecting the git mechanisms you can fork,
clone and pull source-code into your repositories for modification and enhancement. Once your improvement is ready,
make a pull request to integrate your work into the origin birdhouse repositories.

Note: Please keep your forks close to the origin repositories and don’t forget the pull requests.

3.3.2 Git contribution

Note: Please find the git contribution guide in the Wiki.

3.3.3 Issue tracker

To keep track on the contribution and development, please use the issue tracker on GitHub for the corresponding
birdhouse component.

3.3.4 Code Style

A good start to contribute is an enhancement of existing code with better or new functions. To respect a common
coding style, Birdhouse uses PEP8 checks to ensure a consistent coding style. Currently the following PEPS rules are
enabled in setup.cfg:

[flake8]
ignore=F401,E402
max—line-length=120

exclude=tests

See the flake8 documentation on how to configure further options.

To check the coding style run f1ake8:

$ flake8 emu # emu is the folder with python code
or
$ make peps8 # make calls flake8

To make it easier to write code according to the PEPS8 rules enable PEPS checking in your editor. In the following we
give examples how to enable code checking for different editors.

14 Chapter 3. Guidelines

https://github.com/bird-house
https://github.com/bird-house/bird-house.github.io/wiki/Development-Guidelines
https://www.python.org/dev/peps/pep-0008/
http://flake8.pycqa.org/en/latest/

Birdhouse Documentation, Release 0.7.0

Atom

* Homepage: https://atom.io/

* PEP8 Atom Plugin: https://github.com/AtomLinter/linter-pep8

Settings

Max Line Length

Sublime

Install package control if you don’t already have it: https://packagecontrol.io/installation

Follow the instructions here to install Python PEP8 Autoformat: https://packagecontrol.io/packages/Python%
20PEP8%20Autoformat

« Edit the settings to conform to the values used in birdhouse, if necessary

* To show the ruler and make wordwrap default, open Preferences — Settings—User and use the following rules

// set vertical rulers in specified columns.
"rulers": [79],

// turn on word wrap for source and text
// default value is "auto", which means off for source and on for text
"word_wrap": true,

// set word wrapping at this column

// default value is 0, meaning wrapping occurs at window width
"wrap_width": 79

}

Todo: Add PEPS instructions for more editors: PyCharm, Kate, Emacs, Vim, Spyder.

3.3. Software development 15

https://atom.io/
https://github.com/AtomLinter/linter-pep8
https://packagecontrol.io/installation
https://packagecontrol.io/packages/Python%20PEP8%20Autoformat
https://packagecontrol.io/packages/Python%20PEP8%20Autoformat

Birdhouse Documentation, Release 0.7.0

3.3.5 Release Notes and Versions

The development of birdhouse is following a release cycle of around three month. Updates of modules are coordinated
by the developers over the communication channels (gitter chat or Video Conference). New releases are documented
in the release notes and communicated over the mailing list. A release of a birdhouse module is taged with a version
number and appropriate git repository version branch.

For an orientation of when to release a new version:
* Full version (v1.0) with scientific publication in a reviewed journal
e subversion (v1.1) by major changes
¢ subsub versions (v1.1.1) by minor changes
out of the release cycles bug fix patches can be released every time (communication is not mandatory)

e patch v1.1.1_patchl bugfix

3.4 Setting up a new WPS

If you are familiar with all the upper chapters you are ready to create your own WPS. The WPS in birdhouse are named
after birds, so this section is giving you a guidline of how to make your own bird. Birds are sorted thematically, so
before setting up a new one, make sure it is not already covered and just missing some processes and be clear in the
new thematic you would like to provide.

There is a Cookiecutter template to create a new bird (PyWPS application). It is the recommended and fastest way to
create your own bird:

3.5 WPS design

3.6 Setting up a new WPS

If you are familiar with all the upper chapters you are ready to create your own WPS. The WPS in birdhouse are named
after birds, so this section is giving you a guidline of how to make your own bird. Birds are sorted thematically, so
before setting up a new one, make sure it is not already covered and just missing some processes and be clear in the
new thematic you would like to provide.

There is a Cookiecutter template to create a new bird (PyWPS application). It is the recommended and fastest way to
create your own bird:

3.6.1 Writing a WPS process

In birdhouse, we are using the PyWPS implementation of a Web Processing Service. Please read the PyWPS docu-
mentation on how to implement a WPS process.

Note: To get started quickly, you can try the Emu WPS with some example processes for PyWPS.

16 Chapter 3. Guidelines

http://cookiecutter-birdhouse.readthedocs.io/en/latest/
http://cookiecutter-birdhouse.readthedocs.io/en/latest/
http://pywps.org/
https://pywps.readthedocs.io/en/master/process.html
https://pywps.readthedocs.io/en/master/process.html
http://emu.readthedocs.io/en/latest/

Birdhouse Documentation, Release 0.7.0

Parameter

Y

Resource =@ Execution —

Another point to think about when designing a process is the possibility of chaining processes together. The result of
a process can be a final result or be used as an input for another process. Chaining processes is a common practice
but depends on the user you are designing the service for. Technically, for the development of WPS process chaining,
here are a few summary points:

* the functional code should be modular and provide an interface/method for each single task

* provide a wps process for each task

* wps processes can be chained, manually or within the code, to run a complete workflow

* wps chaining can be done manually, with workflow tools, direct wps chaining or with code scripts

* a complete workflow chain could also be started by a wps process.

Input WPS Output / Input WPS Output / Input WPS Output
ﬁ- ﬁ-
Process A Process B Process C

3.6.2 Writing functions

A Process is calling several functions during the performance. Since WPS is a autonom running process several
eventualities needs to be taken into account. If irregularities are occurring, it is a question of the process design if the
performance should stop and return an error or continue with may be an modified result.

In practice, the functions should be encapsulated in try and except calls and appropriate information given to the logfile
or shown as a status message. The logger has several options to to influence the running code and the information
writing to the logfile:

3.6. Setting up a new WPS 17

20

21

22

23

24

25

26

27

Birdhouse Documentation, Release 0.7.0

() Temporar file or memory value

_—= Function (outputis NOT obligatory for final result)
__»Function (output is obligatory for final result)

VA

()

- N
[P ‘\/ \)
N Y

. ()
— ‘// \,“ / N4 \ —-

the following two line needs to be in the beginning of the *.py file.
The ._handler will find the appropriate logfile and include timestemps
and module information into the log.

import logging
LOGGER = logging.getLogger ("PYWPS")

set a status message
per = 5 # 5 will be 5% in the status line
response.update_status ('execution started at : {/}'.fromat (dt.now()), per)

try:
response.update_status ('the process is doing something: {}'.fromat (dt.now()),10)
result = 42
LOGGER.info ('found the answer of life')
except Exception as ex:
msg = 'This failed but is obligatory for the output. The process stops now,
—because: {} '".format (ex)
LOGGER.error (msqg)

try:

response.update_status ('the process is doing something else : [/}'.fromat (dt.
—now()), 20)

interesting = True

LOGGER.info (' Thanks for reading the guidelines ')

LOGGER.debug (' I need to know some details of the process: {}
—~format (interesting)
except Exception as ex:

msg = 'This failed but is not obligatory for the output. The process will
—continue. Reason for the failure: {} '.format (ex)

LOGGER.exception (msqg)

18 Chapter 3. Guidelines

Birdhouse Documentation, Release 0.7.0

3.6.3 Writing documentation
Last but not least, a very very important point is to write a good documentation about your work! Each WPS (bird)
has a docs folder for this where the documentation is written in reStructuredText and generated with Sphinx.

e http://sphinx-doc.org/tutorial.html

* http://quick-sphinx-tutorial.readthedocs.io/en/latest/

The documentation is automatically published to ReadTheDocs with GitHub webhooks. It is important to keep the
Code Style and write explanations to your functions. There is an auto-api for documentation of functions.

Todo: explanation of enabling spinx automatic api documentation.

The main "documentation”_ (which you are reading now) is the starting point to get an overview of birdhouse. Each
birdhouse component comes with its own Sphinx documentation and is referenced by the main birdhouse document.
Projects using birdhouse components like PAVICS_ or "COPERNICUS Data Store”_ generally have their own doc-
umentation as well. To include documentation from external repository here, two custom made sphinx directives can
be used. The gittoctree directive behaves like a normal table of content directive (foctree), but takes as an argument
the URL to the git repo and refers to files inside this directory through their full path. The gitinclude directive acts like
an normal include directive, but takes as a first argument the URL to the git repo this file belongs to. For example:

Note: Look at the Emu to see examples.

3.7 Server setup

3.7.1 Data repository

3.7.2 Running tests

3.8 References

3.7. Server setup 19

http://sphinx-doc.org/rest.html
http://sphinx-doc.org/
http://sphinx-doc.org/tutorial.html
http://quick-sphinx-tutorial.readthedocs.io/en/latest/
https://readthedocs.org
http://emu.readthedocs.io/en/latest/

Birdhouse Documentation, Release 0.7.0

20

Chapter 3. Guidelines

CHAPTER
FOUR

TUTORIALS

4.1 Climate Data with Phyton

Introduction to basic processing of climate data

Note: Coming soon, planed for Dec 2020.

4.1.1 Climate data tutorials

Here are examples of basic climate data processing for sustainable development.

To make sure all required dependencies are installed run conda env create in the root folder of this repository, than
conda activate climdat.

An running installation of mini-conda or Anacona is required.

Access to Data

This tutorial is showing some options to access data, stored in accessable data archives.

ESGF Archive

Acess to CMIP6 data with subset selection for the coordinates of Paris

The code is oriented from https://esgf-pyclient.readthedocs.io/en/latest/notebooks/demo/subset-cmip6.html

Search data

ESGF can be directly connected with the python client pyesgf
loading the client:
from pyesgf.search import SearchConnection

connection to one of the ESGF Nodes
conn = SearchConnection ('https://esgf-node.ipsl.upmc.fr/esg-search', distrib=False) #
—set distrib=True if you want to search all nodes

[

other nodes are:
https://esgf-data.dkrz.de/esg-search

21

https://esgf-pyclient.readthedocs.io/en/latest/notebooks/demo/subset-cmip6.html

Birdhouse Documentation, Release 0.7.0

search of a set of temperature files

ctx =
—'ssp585")

print ('Number of data sets found:

conn.new_context (project="'CMIP6"',

query='tas', frequency='day', experiment_id=

{}'".format (ctx.hit_count))

other querry options might be:

experiment_id =
'ssp434"']

— 'sspll9’,

query = ['tas'

Number of data sets found:

r y r
’ tasmin',

['sspl26',

20

'ssp245"',

'tasmax',

'ssp370', 'ssp460', 'ssp585', 'historical',

'or', 'sfcwWind'] #

getting some more infos of the datasets found:
for result in ctx.search():
print (result.dataset_id)

CMIP6.ScenarioMIP
—upmc.fr

CMIP6.ScenarioMIP.

—upmc.fr

CMIP6.ScenarioMIP.

—upmc. fr

CMIP6.ScenarioMIP.

—upmc.fr

CMIP6.ScenarioMIP.

—upmc.fr

CMIP6.ScenarioMIP.

—upmc. fr
CMIP6.ScenarioMIP
—upmc. fr

CMIP6.ScenarioMIP.

—umr—-cnrm. fr

CMIP6.ScenarioMIP.

—umr—-cnrm. fr

CMIP6.ScenarioMIP.

—umr—-cnrm. fr

CMIP6.ScenarioMIP.

—umr—cnrm. fr

CMIP6.ScenarioMIP.

—umr—-cnrm. fr

CMIP6.ScenarioMIP.

—umr—-cnrm. fr

CMIP6.ScenarioMIP.

—umr—-cnrm. fr

CMIP6.ScenarioMIP.

—umr—-cnrm. fr

CMIP6.ScenarioMIP.

—umr—-cnrm. fr

CMIP6.ScenarioMIP.

—umr—-cnrm. fr
CMIP6.ScenarioMIP

.IPSL.IPSL-CM6A-LR.

IPSL.

IPSL.

IPSL.

IPSL.

IPSL.

IPSL-CM6A-LR.

IPSL-CM6A-LR.

IPSL-CM6A-LR.

IPSL-CM6A-LR.

IPSL-CM6A-LR.

ssp585.rlilplfl.day.tas.gr.v20190614|vesg.ipsl.
sspb85.r2ilplfl.day.tas.gr.v20191121 |vesg.ipsl.
sspb585.rl1ld4ilplfl.day.tas.gr.v20191121|vesg.ipsl.
sspb585.rd4ilplfl.day.tas.gr.v20191122|vesg.ipsl.
sspb85.r6ilplfl.day.tas.gr.v20191121 |vesg.ipsl.

sspb585.rlilplfl.day.tas.gr.v20190903|vesg.ipsl.

.IPSL.IPSL-CM6A-LR.sspb585.r3ilplfl.day.tas.gr.v20191121|vesg.ipsl.

CNRM-CERFACS

.CNRM-CERFACS.

—v20191202|esgl.umr—cnrm. fr

CMIP6.ScenarioMIP
—umr—-cnrm. fr
CMIP6.ScenarioMIP
—umr—-cnrm. fr

.CNRM-CERFACS.

.CNRM-CERFACS.

CNRM-CERFACS.

CNRM-CERFACS.

CNRM-CERFACS.

CNRM-CERFACS.

CNRM-CERFACS.

CNRM-CERFACS.

CNRM-CERFACS.

CNRM-CERFACS.

CNRM-CERFACS.

.CNRM-CM6-1.ssp585.rlilplf2.day.tas.gr.v20190219|esgl.

CNRM-ESM2-1.ssp585.r5i1lplf2.day.tas.gr.v20190410|esgl.
CNRM-ESM2-1.ssp585.r4ilplf2.day.tas.gr.v20190410|esqgl.
CNRM-ESM2-1.ssp585.rlilplf2.day.tas.gr.v20190328|esgl.

CNRM-CM6-1.ssp585.r4ilplf2.day.tas.gr.v20190410|esgl.

CNRM-CM6-1.ssp585.r6ilplf2.day.tas.gr.v20190410|esgl.

gr

CNRM-CM6-1.ssp585.r2ilplf2.day.tas. .v20190410|esgl.

gr

CNRM-CM6-1.ssp585.r311lplf2.day.tas.gr.v20190410|esgl.

CNRM-CM6-1.ssp585.r5ilplf2.day.tas .v20190410|esgl.

.gr
CNRM-ESM2-1.ssp585.rlilplf2.day.tas.gr.v20191021 |esgl.
CNRM-CM6-1-HR.ssp585.rl1ilplf2.day.tas.qgr.

CNRM-ESM2-1.ssp585.r3ilplf2.day.tas.gr.v20190410|esgl.

CNRM-ESM2-1.ssp585.r2ilplf2.day.tas.gr.v20190410|esqgl.

Data sets can consist of multiple files. Each file have an own url to be findable and accessable

22

Chapter 4. Tutorials

[5]:

Birdhouse Documentation, Release 0.7.0

print out the url locations
for i in ctx.search{():
files = i.file_context () .search()
for file in files:
print (file.opendap_url)

http://vesg.ipsl.upmc.fr/thredds/dodsC/cmip6/ScenarioMIP/IPSL/IPSL-CM6A-LR/ssp585/

<, r2ilplfl/day/tas/gr/v20191121/tas_day_IPSL-CM6A-LR_ssp585_r2ilplfl_gr_20150101-
—21001231.nc
http://vesg.ipsl.upmc.fr/thredds/dodsC/cmip6/ScenarioMIP/IPSL/IPSL-CM6A-LR/ssp585/

< rl4ilplfl/day/tas/gr/v20191121/tas_day_IPSL-CM6A-LR_ssp585_rl14ilplfl_gr_20150101-
—21001231.nc
http://vesg.ipsl.upmc.fr/thredds/dodsC/cmip6/ScenarioMIP/IPSL/IPSL-CM6A-LR/ssp585/
~r4ilplfl/day/tas/gr/v20191122/tas_day_IPSL-CM6A-LR_ssp585_r4ilplfl_gr 20150101-
21001231 .nc
http://vesg.ipsl.upmc.fr/thredds/dodsC/cmip6/ScenarioMIP/IPSL/IPSL-CM6A-LR/ssp585/
r6ilplfl/day/tas/gr/v20191121/tas_day_IPSL-CM6A-LR_ssp585_r6ilplfl_gr 20150101-
21001231 .nc
http://vesg.ipsl.upmc.fr/thredds/dodsC/cmip6/ScenarioMIP/IPSL/IPSL-CM6A-LR/ssp585/
—rlilplfl/day/tas/gr/v20190903/tas_day_IPSL-CM6A-LR_sspb585_rlilplfl gr 20150101-
21001231 .nc
http://vesg.ipsl.upmc.fr/thredds/dodsC/cmip6/ScenarioMIP/IPSL/IPSL-CM6A-LR/ssp585/
—rlilplfl/day/tas/gr/v20190903/tas_day_IPSL-CM6A-LR_sspb585_rlilplfl gr 21010101-
23001231 .nc
http://vesg.ipsl.upmc.fr/thredds/dodsC/cmip6/ScenarioMIP/IPSL/IPSL-CM6A-LR/ssp585/
—r3ilplfl/day/tas/gr/v20191121/tas_day_IPSL-CM6A-LR_sspb585_r3ilplfl _gr_20150101-
21001231 .nc

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-CM6—-1/
—ssp585/rlilplf2/day/tas/gr/v20190219/tas_day_CNRM-CM6-1_ssp585_rlilplf2_gr_20150101-
—21001231.nc

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-ESM2-1/
—»ssp585/r5ilplf2/day/tas/gr/v20190410/tas_day_CNRM-ESM2-1_ssp585_r5ilplf2_gr_
—20150101-21001231.nc

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-ESM2-1/
—»ssp585/rdilplf2/day/tas/gr/v20190410/tas_day_CNRM-ESM2-1_ssp585_rd4ilplf2_gr_
—20150101-21001231.nc

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-CM6—-1/
—»ssp585/rdilplf2/day/tas/gr/v20190410/tas_day_ CNRM-CM6-1_ssp585_r4ilplf2_gr_20150101-
21001231 .nc

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/
—»ssp585/r6ilplf2/day/tas/gr/v20190410/tas_day_CNRM-CM6-1_ssp585_r6ilplf2_gr_20150101-
21001231 .nc

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/
—»ssp585/r2ilplf2/day/tas/gr/v20190410/tas_day_CNRM-CM6-1_ssp585_r2ilplf2_gr_20150101-
21001231 .nc

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/
—»ssp585/r3ilplf2/day/tas/gr/v20190410/tas_day_CNRM-CM6-1_ssp585_r3ilplf2_gr_ 20150101~
21001231 .nc

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/
—»ssp585/r5ilplf2/day/tas/gr/v20190410/tas_day_CNRM-CM6-1_ssp585_r5ilplf2_gr_ 20150101~
21001231 .nc

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-ESM2-1/
—»ssp585/rlilplf2/day/tas/gr/v20191021/tas_day_ CNRM-ESM2-1_ssp585_rlilplf2_ gr_
—20150101-21001231.nc

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1—
—+HR/ssp585/rlilplf2/day/tas/gr/v20191202/tas_day_CNRM-CM6-1-HR_ssp585_rlilplf2_gr_
—20150101-20641231.nc

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1—

—20650101-21001231.nc

4.1. Climate Data with Phyton 23

(71:

[10]:

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-ESM2-1/
—sspb85/r3ilplf2/day/tas/gr/v20190410/tas_day_CNRM-ESM2-1_ssp585_r3ilplf2_gr_
—20150101-21001231.nc

http://esgl.umr-cnrm. fr/thredds/dodsC/CMIP6_CNRM/ScenarioMIP/CNRM-CERFACS/CNRM-ESM2-1/
—»sspb85/r2ilplf2/day/tas/gr/v20190410/tas_day_CNRM-ESM2-1_ssp585_r2ilplf2_gr_
—20150101-21001231.nc

Access Data

access the metadata

import xarray as xr

ds = xr.open_dataset (files[0] .opendap_url, chunks={'time': 120})
print (ds)

select the area of Paris, due to the low resolution of CMIP6 it will result in just,
—one grid-point

da = ds['tas']

da = da.isel (time=slice (0, 1000)) # fetching just the first 1000 days

da = da.sel (lat=slice(2, 3), lon=slice (47, 49))

Plot the timeseries
%matplotlib inline
da.plot ()

[<matplotlib.lines.Line2D at 0x7£0e950be580>]

lat = 2.1011514025768716, lon = 478125, height...

306 1

Mear-Surface Air Temperature
[K]
o]
[N

298 -

—&"-"I »&“ﬁ“l ﬁ*"' »&‘J"I *&ﬁ"’l *&‘“I *@“"I ﬁ*"l ﬂ“"l

Time axis

convert from Kelvin to Celcius
tem_C = da[:] — 273.15

import a plotting library
from matplotlib import pyplot as plt

24 Chapter 4. Tutorials

[26]:

[27]:
[27]:

[31]:

[31]:

Birdhouse Documentation, Release 0.7.0

from numpy import squeeze

squeeze (da.values)

da.values = da.values - 273.15

plot the temperature in celsius
plt.plot (tem C)

[<matplotlib.lines.Line2D at 0x7f0e8cc93070>]

lat = 2.1011514025768716, lon = 47.8125, height...

32 1

28 1

26 1

MNear-Surface Air Temperature
K]

24 T T T T T T T T T
L Sl L s L

Time axis

da.plot ()

[<matplotlib.lines.Line2D at 0x7f0e8cdb0220>]

lat = 2.1011514025768716, lon = 478125, height...

32 1

28 1

26 1

Mear-Surface Air Temperature
[K]

24

—&1‘; —sfﬁ'"l -@*"' -&‘J"I -&-ﬁ“l '&‘“I —@“"I 1@“' —eﬂ“l

Time axis

to explore the data according to the choosen query:
da

<xarray.DataArray 'tas' (time: 31411, lat: 1, lon: 1)>
dask.array<getitem, shape=(31411, 1, 1), dtype=float32, chunksize=(120, 1, 1),

—chunktype=numpy.ndarray>
YK Py Y

[

(continues on next page)

4.1. Climate Data with Phyton 25

[37]:

Birdhouse Documentation, Release 0.7.0

Coordinates:
* lat (lat) floate6e4 2.101
* lon (lon) float64 47.81
height floato64
* time (time) datetime64[ns] 2015-01-01T12:00:00
Attributes:
online_operation: average
cell_methods: area: time: mean
interval_operation: 900 s
interval_write: 1 d
standard_name: air_temperature
description: Near—-Surface Air Temperature
long_name: Near-Surface Air Temperature
history: none
units: K
cell_measures: area: areacella
_ChunkSizes: [1 128 256]

da.to_netcdf ('~/data/testforparis_2015-2100.nc")

files[0].file_id

(continued from previous page)

2100-12-31T12:00:00

'CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-ESM2-1.ssp585.r2ilplf2.day.tas.gr.v20190410.tas_
—day_CNRM-ESM2-1_sspb585_r2ilplf2_gr_20150101-21001231.nclesgl.umr-cnrm.fr'

import xclim

WARNING:pint.
WARNING:pint.
WARNING:pint.
WARNING:pint.
WARNING:pint.
WARNING:pint.

—packages/xarray/core/options.py:48: FutureWarning:

util:
util:
util:
:Redefining 'celsius' (<class 'pint.definitions.UnitDefinition'>)
util:
util:

util

Redefining 'delta_degC' (<class 'pint.definitions.UnitDefinition'>)
Redefining 'celsius' (<class 'pint.definitions.UnitDefinition'>)
Redefining 'degC' (<class 'pint.definitions.UnitDefinition'>)

Redefining 'C' (<class 'pint.definitions.UnitDefinition'>)
Redefining 'd' (<class 'pint.definitions.UnitDefinition'>)
WARNING:py.warnings:/home/testuser/anaconda3/envs/climatedata/lib/python3.8/site—

The enable_cftimeindex option is, |

—now a no-op and will be removed in a future version of xarray.

warnings.warn (

meanTemp = xclim.indices.tg_mean (da)

WARNING:py.warnings: /home/testuser/anaconda3/envs/climatedata/lib/python3.8/site—

—packages/xarray/core/common.py:978: FutureWarning:
is deprecated.

—Grouper ()

The new arguments that you should use are 'offset' or

>>> df.resample (freg="3s", base=2)

becomes:

>>> df.resample (fregq="3s", offset="2s")

grouper =

pd.Grouper (

'base’

in .resample() and in_,

'origin'.

26

Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

[38]: # yearly mean
meanTemp.plot ()

[38]: [<matplotlib.lines.Line2D at 0x7£24d1860850>]

lat = 2.1011514025768716, lon = 478125, height...

304

303 ~

302 1

301 1

Near-5urface Air Temperature
[K]

300 1

w.n'*f"’l #"I 1“"%' 'ﬁ"“l w.n‘*"" 'ﬁ‘“l w.n“"" ﬂ“ﬁl 1»““'

time

Resolution of Climate Model Data

This module of the tutorial is focussing on the different resolutions for global and regional climate model data. Test
data are available in the VirtualMashine ~/data/orog/ or to be fetched directly from the ESGF archive (see Module
1Y)

load necessary libraries for plotting maps

[2]: print ('Hello FAZO'")

Hello FAZO

[4]: from matplotlib import pyplot as plt
import cartopy.crs as ccrs
from numpy import meshgrid
import cartopy.feature as cfeature

additional features
from cartopy import config
from cartopy.util import add_cyclic_point

to show the plots inline (this is only necessary when running the code in a_,
—notebook)
tmatplotlib inline

4.1. Climate Data with Phyton 27

Birdhouse Documentation, Release 0.7.0

configuration of the map focussing on Kirgistan and Tadjikistan

The ploting of maps is realised with the python libraies matplotlib and cartopy Further code ideas can be found here:
https://scitools.org.uk/cartopy/docs/v0.15/index.html

NaturalEarthFeature is an open data source providing general data like catchment,,
—areas

land_50m = cfeature.NaturalEarthFeature ('physical', 'land', '50m', # Valid scales are
—"110m", "50m", and "10m".
edgecolor="k"',
facecolor=cfeature.COLORS['land'])

defining a colorsceem
cmap='gist_earth_r'

extent of the map (lat0O, latl, lon0O, lonl)
extent=(66.0 , 81 , 36.5, 43.7)
linewidth=0.001

defining a new graphic
fig = plt.figure(figsize=(20,20), facecolor='w', edgecolor='k'")
fig.tight_layout ()

setting projections and extent of the map
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent (extent)

ax = plt.axes (projection=ccrs.Orthographic (central_ longitude=70.0, central_
—latitude=40.0, globe=None))

defining some features to be seen in the map:
ax.add_feature (land_50m)

ax.add_feature (cfeature.LAKES)

ax.add_feature (cfeature.OCEAN)

ax.add_feature (cfeature.BORDERS, linewidth=3,)
ax.add_feature (cfeature.COASTLINE)
ax.add_feature (cfeature.RIVERS)

ax.gridlines (draw_labels=True)

ax.stock_img ()
ax.xaxlis.set_ticks_position('bottom")
ax.yaxis.set_ticks_position('left")

save the graphic as a png:
plt.savefig(fname="'/home/testuser/Pictures/map_country_overview.png')

show the result
plt.show ()

28 Chapter 4. Tutorials

https://scitools.org.uk/cartopy/docs/v0.15/index.html

Birdhouse Documentation, Release 0.7.0

63°E 70°E T2°E T4°E

T6°E

42°N

39°N

38°N

open a climate model file

In the Tutorial Virtual Mashine there are some test data in the folder /home/testuser/data/orog.

orog is the variable for the orography underlying in the climate model.

loading necessary librabries
from netCDF4 import Dataset
import numpy as np

from os.path import join

defining the folder where the data are stored
p = '/home/testuser/data/orog/"

#

#
#

defining

CMIP5_LR
CMIP5_MR

the file pathes as python variables:

= join(p, 'orog fx MPI-ESM-LR _historical r0iOp0O.nc')

T6°E

42°N

39°N

38°N

CMIP5_P

CMIP6_HR =

join (p, 'orog_fx MPI-ESM-MR _historical_r0iOpO.nc')
= join(p, 'orog fx MPI-ESM-P_historical r0iOp0O.nc')

join(p, 'orog_fx_ CNRM-CM6-1-HR_historical_rlilplf2_gr.nc')

CMIP6_LR = join(p, 'orog_fx IPSL-CM6A-LR_sspl26_r2ilplfl _gr.nc')

CAS22 = join(p, 'orog CAS-22_MPI-M-MPI-ESM-LR_historical_r0iOpO_GERICS-REMO2015_vl_fx.

—nc')

CAS44 = join(p, 'orog_CAS-44_ _ECMWF-ERAINT_ evaluation_r0iOpO_MOHC-HadRM3P_vl_fx.nc')

orog_fx CNRM-CM6-1_historical rlilplf2 gr.nc

4.1. Climate Data with Phyton

29

Birdhouse Documentation, Release 0.7.0

#HA##A A AR AR AR AR A A A AR HAAEAS
CMIP6

ds = Dataset (CMIP6_LR)

orogC6_LR = ds.variables['orog']
latC6_LR = ds.variables['lat']
lonC6_LR = ds.variables['lon']

fig , ax = plt.subplots(nrows=1, ncols=3, figsize=(20,20), facecolor='w',
—edgecolor="k")
fig = plt.figure(figsize=(20,20), facecolor='w', edgecolor='k'")

fig.tight_layout ()

ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent (extent)

ax.add_feature (cfeature.BORDERS, linewidth=5)
ax.add_feature (cfeature.COASTLINE, linewidth=7)

lonsC6_LR, latsC6_LR = meshgrid(lonC6_LR, latC6_LR)
cs = ax.pcolormesh(lonsC6_LR, latsC6_LR, orogC6_LR, transform=ccrs.PlateCarree(),
—Ccmap=cmap,

edgecolor="'black', linewidth=5, alpha=0.7) #, vmin=0, vmax=3800)
plt.title('CMIP6 LR', fontsize=40)

plt.savefig (fname="'/home/testuser/Pictures/CIMP6_LR.png")

CMIP6 LR

ds = Dataset (CMIP6_HR)
orogC6_HR = ds.variables['orog']
latC6_HR = ds.variables['lat']

(continues on next page)

30 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

lonC6_HR = ds.variables['lon']
fig , ax = plt.subplots(nrows=1, ncols=3, figsize=(20,20), facecolor='w',
—edgecolor="k")
fig = plt.figure(figsize=(20,20), facecolor='w', edgecolor='k'")
fig.tight_layout ()
ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent (extent)
ax.add_feature (cfeature.BORDERS, linewidth=5)
ax.add_feature (cfeature.COASTLINE, linewidth=7)
lonsC6_HR, latsC6_HR = meshgrid(lonC6_HR, latC6_HR)
cs = ax.pcolormesh(lonsC6_HR, latsC6_HR, orogC6_HR, transform=ccrs.PlateCarree(),
—cmap=cmap,

edgecolor='black', linewidth=0.5, alpha=0.7) #, vmin=0, vmax=3800)
plt.title('CMIP6 HR', fontsize=40)

plt.savefig (fname="'/home/testuser/Pictures/CIMP6_HR.png')

CMIP6 HR

N~ —

H=

#HEAFFEAAFRARFHA
CORDEX CAS-44

ds = Dataset (CAS44)
(continues on next page)

4.1. Climate Data with Phyton 31

Birdhouse Documentation, Release 0.7.0

(continued from previous page)
orog44 = ds.variables['orog']
lats44 = ds.variables['lat']
lons44 ds.variables['lon']
lon44 = lons447][0, :]
lat44 lats44([:,0]

fig = plt.figure(figsize=(20,20), facecolor='w', edgecolor='k'")

fig.tight_layout ()

ax = plt.axes(projection=ccrs.PlateCarree())
ax.set_extent (extent)

ax.add_feature (cfeature.BORDERS, linewidth=5)
ax.add_feature (cfeature.COASTLINE, linewidth=7)

ax.stock_img ()

cs = ax.pcolormesh (lons44, lats44, orog44, transform=ccrs.PlateCarree (), cmap=cmap,
edgecolor='black', linewidth=0.01, alpha=0.7) # visible=True,
—hatch = '|', linestyle='-') #, vmin=0, vmax=3800)

plt.title ('CORDEX CAS-44', fontsize=40)
plt.savefig (fname="'/home/testuser/Pictures/CAS-44.png")

CORDEX CAS-44

ds = Dataset (CAS22)

orog22 = ds.variables['orog']
lats22 ds.variables['lat']
lons22 ds.variables['lon']
lon22 = lons22[0, :]

lat22 lats22[:,0]

fig = plt.figure(figsize=(20,20), facecolor='w', edgecolor='k'")

fig.tight_layout ()
ax = plt.axes(projection=ccrs.PlateCarree())

(continues on next page)

32 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

ax.set_extent (extent)
ax.add_feature (cfeature.BORDERS, linewidth=5)
ax.add_feature (cfeature.COASTLINE, linewidth=7)

ax.stock_img ()

cs = ax.pcolormesh (lons22, lats22, orog22, transform=ccrs.PlateCarree(), cmap=cmap ,
edgecolor='black', linewidth=0.01, alpha=0.7) # visible=True,
—hatch = '|', linestyle='-') #, vmin=0, vmax=3800)

ax.xaxlis.set_ticks_position('bottom")
ax.yaxis.set_ticks_position('left")
plt.colorbar(cs)

plt.title ('CORDEX CAS-22', fontsize=40)
plt.savefig(fname="'/home/testuser/Pictures/CAS-22.png")

CORDEX CAIS‘ZZ

Bias adjustment

from xclim import sdba

dgm.train (ref, hist)
scen = dgm.adjust (sim)

import xarray as =xr
import numpy as np
from os import path, listdir

path_data = '/home/nils/ramboll/paris/data/’'

(continues on next page)

4.1. Climate Data with Phyton

33

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

path_adjust = '/home/nils/ramboll/paris/data_adjust/"'
path_pics = '/home/nils/Dropbox/Paris_diag_climat - Documents/9_climate/pics/'
path_obs = '/home/nils/Dropbox/Paris_diag_climat - Documents/5_travail/l_phasel/1_

—lprojections/observation/"'

tas_files = [path.join(path_data, 'tas',f) for f in listdir('data/'+ 'tas')]

tasmin_files = [path.join(path_data, 'tasmin',f) for f in listdir('data/'+ 'tasmin')]
tasmax_files = [path.join(path_data, 'tasmax',f) for f in listdir('data/'+ 'tasmax')]
pr_files = [path.join (path_data, 'pr',f) for f in listdir('data/'+ 'pr')]

xr.concat

Observation:

def sortssp_by_drsname (resource) :
nc_datasets = {}
tmp_dic = {}

try:
for nc in resource:
LOGGER.info('file: %s' % nc)

p, f = path.split (path.abspath(nc.replace('.nc', "")))
n = f.split('_")
if len([int (i) for i in n[-1].split('-') if i.isdigit()]) == 2:
bn = '_'.join(n[0:-17) # skipping the date information in the_
—filename
nc_datasets[bn] = [] # dictionary containing all datasets names
elif len([int (i) for i in n[-2].split('-'") if i.isdigit()]) == 2:
bn = '_'.join(n[0:-2]) # skipping the date information in the_
— filename
nc_datasets[bn] = [] # dictionary containing all datasets names
else:

print ('file is not DRS convention conform!"')

select only necessary names
ssp_datasets = nc_datasets.copy ()
if any("_ssp" in s for s in nc_datasets.keys()):
for key in nc_datasets.keys() :
if 'historical' in key:
ssp_datasets.pop (key)
nc_datasets = ssp_datasets.copy ()
print ('historical data set names removed from dictionary')
else:
print ('no SSP dataset names found in dictionary')
print ('Got dataset names for dic keys')
except Exception as e:
print ('failed to get dataset names for dic keys {}'.format (e))

collect the file according to datasets
for key in nc_datasets:
try:
if historical_ concatination is False:
for n in resource:
if '%s_' % key in n:
nc_datasets [key] .append (path.abspath (n)) # path. join (p, n))

ex = ['sspll9', 'sspl26', 'ssp245', 'ssp370', 'ssp434"', 'ssp460', 'ssp585"',

(continues on next page)

H W R R W

34 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

elif historical_ concatination is True:
key_hist = key.replace('sspll9', 'historical').\
replace ('sspl26', 'historical') .\

replace ('ssp245', 'historical').\
replace ('ssp370', 'historical') .\
replace ('ssp434', 'historical') .\
replace ('ssp460', 'historical').\
replace ('sspb585', 'historical')
for n in resource:
if '{}_'.format (key_hist) in n:
nc_datasets[key] .append (path.abspath(n))
if '{}_'.format (key) in n:
nc_datasets[key] .append (path.abspath (n)) # path. join(p, n))
else:
LOGGER.error ('append file paths to dictionary for key %s failed' $%_
—key)
nc_datasets[key] .sort ()
except Exception as e:
print ('failed for{e}'.fromat (e))
return nc_datasets
ds = sortssp_by_drsname (pr_files)
var = 'pr'
tas_obs = xr.open_dataset (path. join (path_obs + '{}_day_montsouris-observation.nc'.
—format (var)))
for key in ds:
try:
files = []
for f in dsf[key]:
files.append (xr.open_dataset (f))
ts = xr.concat (files, 'time')
ts.attrs['experiment_id'] = key.split('_'") [3]

dgm = sdba.adjustment.DetrendedQuantileMapping ()
dgm = sdba.EmpiricalQuantileMapping (nquantiles=20, group='time', kind='+")
OM.train (ref, hist)

dagm.train(tas_obs[var].sel (time=slice("1971-01-01", "2000-12-31")),
ts[var] .sel (time=slice ("1971-01-01", "2000-12-31")))
scen = dgm.adjust (ts[var])

ts[var] .values = scen.values
out_file = path.join(path_adjust, var, '{/.nc'.format (key))
ts.to_netcdf (out_file, unlimited_dims="'time"')
ts.close()
except Exception as e:
print ('failed for {} : {}'.format (key, e))

historical data set names removed from dictionary
historical data set names removed from dictionary

(continues on next page)

4.1. Climate Data with Phyton 35

Birdhouse Documentation, Release 0.7.0

historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical

data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names

removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary

(continued from previous page)

(continues on next page)

36

Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical

data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names

removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary

(continued from previous page)

(continues on next page)

4.1. Climate Data with Phyton

37

Birdhouse Documentation, Release 0.7.0

historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical
historical

data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names
names

removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed
removed

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary
dictionary

(continued from previous page)

(continues on next page)

38

Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

historical data set names removed from dictionary
historical data set names removed from dictionary
historical data set names removed from dictionary
historical data set names removed from dictionary
historical data set names removed from dictionary
historical data set names removed from dictionary
historical data set names removed from dictionary
historical data set names removed from dictionary
Got dataset names for dic keys

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but
—~time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_

o

—writingo to 2a 1ile
—wWIriting to a 1.C

(continues on next page)

4.1. Climate Data with Phyton 39

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—~time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,

40 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7

.0

failed for pr_day_IPSL-CM6A-LR_sspd460_rlilplf2_gr : dayofyear must not be empty

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.

—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.

—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.

—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—~conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.

—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.

—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.

—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—~conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.

—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.

—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,

(continues on next page)

4.1. Climate Data with Phyton

41

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds vaxX€oapuuss pamext page)
—time.encoding does not have units specified. The units encodings for 'time' and
—time_pbounds ' will be determined independently and may not be equal, counter to CF-
432»cor1ventions. If this is a concern, specify a units encoding for 'ti@aﬂwoﬁ'eJUtonals
—writing to a file.

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—~time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
(continues on next page)

4.1. Climate Data with Phyton 43

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds vaxX€oapuuss pamext page)
—time.encoding does not have units specified. The units encodings for 'time' and
—time_bounds ' will be determined independently and may not be equal, counter to CF-
434»'cor1ventions. If this is a concern, specify a units encoding for 'ti@aﬂwoﬁ'eJUtonals
—writing to a file.

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—~time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before_
—writing to a file.

UserWarning,
/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,,
—time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,
[1117:
[111]: 'sspl26'
[1: tas_day_CNRM-ESM2-1_sspl26_r4ilplf2_gr
tas_day_IPSL-CM6A-LR_ssp460_rlilplf2_gr
[1047:
out_file = path.join(path_adjust, var, ' .nc'.format (key))
out_file
[104]: "/home/nils/ramboll/paris/data_ajust/tas/tas_day_CNRM-ESM2-1_ssp245_r4ilplf2_gr.nc'

4.1. Climate Data with Phyton 45

Birdhouse Documentation, Release 0.7.0

scen = dgm.adjust (ts[var])

ts['tas'].values = scen.values

ts.to_netcdf (path. join (path_adjust,var , "/{}.nc".format (key)), unlimited dims='time
")

ts.close()

ValueError Traceback (most recent call last)
<ipython-input-92-c8e4051ebff0> in <module
—-——-> 1 scen = dgm.adjust (ts[var])

2 # ts['tas'].values = scen.values

3 # ts.to_netcdf (path.join (path_adjust,var , "/{}.nc".format (key)), unlimited_
—dims="'time"')

4 # ts.close()

~/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xclim/sdba/adjustment.py in
—adjust (self, sim, *xkwargs)

104 if hasattr(self, "group"):

105 # Right now there is no other way of getting the main adjustment,
—~dimension
-—> 106 _raise_on_multiple_chunk (sim, self.group.dim)

107

108 if |

~/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xclim/sdba/adjustment.py in

—_raise_on_multiple_chunk(da, main_dim)

38 if da.chunks is not None and len(da.chunks[da.get_axis_num(main_dim)]) >
-1

39 raise ValueError (
———> 40 f"Multiple chunks along the main adjustment dimension {main_dim}
—1is not supported."

41)

42

ValueError: Multiple chunks along the main adjustment dimension time is not supported.

ds[key]

['/home/nils/ramboll/paris/data/tas/tas_day_CNRM-ESM2-1_historical_r4ilplf2_gr_
<+18500101-20141231_sub.nc',

'/home/nils/ramboll/paris/data/tas/tas_day_CNRM-ESM2-1_ssp245_r4ilplf2_gr_20150101-
<21001231_sub.nc']

files = []
for f in enumerate(ds['tas_day_ CNRM-CM6-1_ssp370_r5ilplf2_gr']):
files.append (xr.open_dataset (f))

ts = xr.concat (files, 'time')

ds['tas_day_CNRM-CM6-1_ssp370_r5ilplf2_gr']

['/home/nils/ramboll/paris/data/tas/tas_day_CNRM-CM6-1_historical_r5ilplf2_gr_
—18500101-20141231_sub.nc',

'/home/nils/ramboll/paris/data/tas/tas_day_CNRM-CM6-1_ssp370_r5ilplf2_gr_20150101-
—21001231_sub.nc']

ts['tas'].plot ()

46 Chapter 4. Tutorials

[83]:

[32]:

Birdhouse Documentation, Release 0.7.0

[<matplotlib.lines.Line2D at 0x7£39del5£590>]

height = 2.0, lon = 2.8125, lat = 48.3263610181. ..

310 1

300 -

290 1

280 1

270 1

Mear-5urface Air Temperature
[K]

260 1

2 g

file hist =

—rl10ilplf2 gr. 19500101-20141231_sub.nc'

N L L

Time axis

'/home/nils/ramboll/paris/data/pr/pr._day_CNRM-CMé6-1_historical_

hist = xr.open_dataset (file_hist)
ref = xr.open_dataset (file_obs)

ref = xr.DataArray (val_obs,

—'K'})
hist = xr.DataArray(val_hist,
:_)l: IKI})

dgm.train(obs['tas'].sel (time=slice("1999-01-01",
—sel (time=slice ("1971-01-01",

scen.values

array ([[[283.

[[285.

[[282.

[[282.

[[279.

[[279.

11070111171,

0958507911,

85011458]],

16726647171,

2924031511,

72952784111)

dims=('time',),

dims=('time',),

"2000-12-31")))

coords={'time': ts_obs}, attrs={'units':

coords={"'time': ts_hist}, attrs={'units

"2000-12-31")), hist['tas'].

4.1. Climate Data with Phyton

47

[78]:

[781]:

[69]:

[24] :

Birdhouse Documentation, Release 0.7.0

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/xarray/conventions.
—py:427: UserWarning: Variable 'time' has datetime type and a bounds variable but,
—~time.encoding does not have units specified. The units encodings for 'time' and
—'time_bounds' will be determined independently and may not be equal, counter to CF-
—conventions. If this is a concern, specify a units encoding for 'time' before
—writing to a file.

UserWarning,

scen.mean ()

<xarray.DataArray ()>
array (285.75631892)
Coordinates:

height float64 2.0

ts.close ()

tas_obs.close ()

scen.var?

scen.to_netcdf (path. join (path_adjust, "tas/test.nc"), unlimited _dims='time')

ds_ad = sdba.processing.adapt_freqg(sim=hist['pr'], ref=ref['pr'], thresh=0.05)
OM_ad = sdba.EmpiricalQuantileMapping (nquantiles=15, kind='x"', group='time')
OM_ad.train(ref['pr'], ds_ad.sim_ad)

scen_ad = QM_ad.adjust (hist['pr'])

import numpy as np
tas = np.squeeze (obs['tas'])

sl = obs['tas'].sel(time=slice("2000-06-01", "2000-06-10"))

dif = hist — scen
scen.plot ()

[<matplotlib.lines.Line2D at 0x7£08aa698450>]

48 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

lat = 48.326361018139856, lon = 2.8125

00012 4

00010 4

00008 4

00006 4

00004 4

Precipitation [kg m-2 5-1]

00002 A

00000 4

T T T T T T
S L L. . S L
Time axis

[59]: hist['pr'].plot ()

[59]: [<matplotlib.lines.Line2D at 0x7f£08aa6b25d0>]

lat = 48.326361018139856, lon = 2.8125

00005 A

00004

00003 4

00002 4

Precipitation [kg m-2 5-1]

00001 A

00000 4

T T T T T T
o o® g® g e e e
Tirne axis

[63]: obs['pr'].plot ()

[63]: [<matplotlib.lines.Line2D at 0x7f08aa7el1310>]

4.1. Climate Data with Phyton 49

Birdhouse Documentation, Release 0.7.0

lon = 2.8125, lat = 48.326361018139856

00012 4

00010 4

00008

00006 4

00004 4

Precipitation [kg m-2 5-1]

00002 4

00000 4

N L L L L L L

Time axis

: scen_ad.plot ()

[<matplotlib.lines.Line2D at 0x7f08aa407e50>]

lat = 48.326361018139856, lon = 2.8125

0012 4

00010 4

00008 4

00006 4

00004 4

Precipitation [kg m-2 5-1]

00002 4

00000 4

T T T T T T
o o® g® g e e e
Tirne axis

50

Chapter 4. Tutorials

[11]:

[127]:

Birdhouse Documentation, Release 0.7.0

Basic Visusalisation

from birdy import WPSClient
from os import listdir, path

from shutil import move
from os.path import join

#

To display Images from an url

from IPython.core.display import HTML
from IPython.display import Image

from matplotlib import pyplot as plt
from matplotlib import colors

#
#
#

#
#

#
#

from matplotlib.patches import Polygon
import matplotlib.patches as mpatches
import cartopy.feature as cfeature

import cartopy.crs as ccrs
from cartopy.util import add_cyclic_point

from flyingpigeon.nc_statistic import fieldmean
from flyingpigeon.nc_utils import get_variable, get_coordinates

from flyingpigeon.nc_utils import get_time, get_values # sort_by filename,
from flyingpigeon.plt_ utils import fig2plot

#
#

from numpy import meshgrid
from netCDF4 import Dataset

import numpy as np

import pandas as pd

from datetime import datetime as dt
from tempfile import mkstemp

SSP_colors = {'sspb85':'#830b22"',

'ssp460':"#e78731",
'ssp370':"#£11111",
'ssp245':"#e9dc3d’,
'sspl26':'#1d3354",
'sspll9':'#1e9583"'}

indices = ['tg-mean', 'tx-mean' , 'tn-mean' , 'tn-min' , 'tx-max',
'prcptot', 'wetdays', 'rxlday', 'rxbday', 'dry-days', 'cdd', 'cwd',
'ice-days', 'frost-days',

'jours—chaud', 'Jjours-tres-chaud', 'tropical-nights']

delta = [-273.15, -273.15, -273.15, -273.15, -273.15,
o, 0,0,0,0,0,
0,0,
0,0,
0]
titles = ['Température moyenne quotidienne (°C/an)’',

(continues on next page)

4.1. Climate Data with Phyton 51

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

'Température maximale quotidienne (°C/an)’',
'Température minimale quotidienne (°C/an)’',
'Température minimale pour le jour le plus froid (°C/an)',
'Température maximale pour le jour le plus chaud (°C/an)',

'Cumul pluviométrique annuel (mm/an)',
'Nombre de jours humide par an',

"Cumul pluviométrique hivernal : octobre a mars (mm/an) ',

"Cumul pluviométrique estival : avril a septembre (mm/an)',

'Nombre de jours avec fortes pluies : > 10 mm (j/an)’',

'Nombre de jours sur 30 ans avec précipitations intenses : > 50 mm (j/an)
‘—"/

Evolution des précipitations> 20 mm en 24h en hiver (%),

Evolution des précipitations> 20 mm en 24h en été (%),

'Précipitation del jour le plus pluvieux par an (mm/j)"',
'Somme précipitations max. sur 5 jours consécutifs',
'Nombre de jours sans précipitation (j/an)’',

'Journées consécutives de sécheresse',

'Jours humides consécutifs',

'Nombre de jours de gel : (j/an)', # t_max 0°C
'Nombre gelées nocturnes : (j/an)', # t_min 0°C

'Nombre de jours chauds 25 °C (j/an)’',
'Nombre de jours tres chauds : 30 °C (j/an)',

'Nombre de nuits tropicales : 20 °C (j/an)',

"Index d'intensité de précipitations",

]

Nombre de DJU période estivale avec T° référence 24°C (°C/an)
Nombre de DJU période hivernale avec T° référence 18°C (°C/an)

Nombre de jours faisant suite a une période de 15 jours consécutifs sans_,
wprécipitation - indicateur de sécheresse météorologique simple (j/an).

Nombre de jours sur 30 ans avec fortes rafales : > 100km/h
Evolution du vent moyen hivernal a 10m (%)
Evolution du vent moyen estival a 10m (%)

path_pics = '/home/nils/Dropbox/Paris_diag_climat - Documents/5_travail/l_phasel/1_
—lprojections/pics/"

path_csv = '/home/nils/Dropbox/Paris_diag_climat - Documents/5_travail/l_phasel/1_
—lprojections/csv/"'

path_indices = '/home/nils/Dropbox/Paris_diag_climat - Documents/5_travail/l_phasel/1_
—lprojections/indices_adjust/"'

path_obs = '/home/nils/Dropbox/Paris_diag_climat - Documents/5_travail/l_phasel/1_

—lprojections/observation/indices/"'

def plot_ssp_uncertainty_anormalie (resource, variable, ylim=None, title=None,
—observation=None, decode_cf=True,

file_extension='png', delta=0, window=None, dir__
—output=None, (continues on next page)

52 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

figsize=(10, 10)):

mmn

creates a png file containing the appropriate uncertainty plot.

:param resource: list of files containing the same variable

:param delta: set a delta for the values e.g. —-273.15 to convert Kelvin to Celsius

:param variable: variable to be visualised. If None (default), variable will be_
—detected

:param ylim: Y-axis limitations: tuple (min,max)

:param title: string to be used as title

:param observation: optional data of observations

:param figsize: figure size defult=(10,10)

:param decode_cf: decode of netCDF values according cf convention

:param window: windowsize of the rolling mean

:returns str: path/to/file.png
from flyingpigeon.plt_ncdata import ts_data
from flyingpigeon.nc_utils import sortssp_by_drsname

try:
fig = plt.figure(figsize=figsize, facecolor='w', edgecolor='k")
ax = fig.add_subplot (111)

plt.subplots_adjust (wspace=0, hspace=0.2)

S

fig = plt.figure(figsize=figsize, dpi=600, facecolor='w', edgecolor='k")
LOGGER.debug ('Start visualisation spaghetti plot')
=== prepare invironment
if type(resource) != list:
resource = [resource]
var = get_variable (nc)
if variable is None:
variable = get_variable (resource[0])
LOGGER.info ('plot values preparation done')
except Exception as ex:

S ¥R

HoW W W

print ("plot values preparation failed {}".format (ex))
LOGGER.exception (msg)
raise Exception (msg)
try:
dic = sortssp_by_drsname (resource) # sort_by_ filename (resource, historical_

—concatination=True)
df = ts_data(dic, delta=delta)
except Exception as ex:
print ("failed to sort data".format (ex))

22T LS EEEEEEEEEE LS L

serach datasets according to scenario

try:
sspl26 = [ds for ds in df.columns if 'sspl26' in ds]
ssp245 [ds for ds in df.columns if 'ssp245' in ds]
ssp585 = [ds for ds in df.columns if 'sspb585' in ds]

print ('all scenarios are seperated')
except Exception as e:
print ('failed to split scenarios {}'.format (e))

(continues on next page)

4.1. Climate Data with Phyton 53

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

window = 30 # 30 years

if len(df.index.values) >= window * 2:
TODO: calculate windowsize according to timestapms (day,mon,yr ... with get_
— frequency)
df_smooth = df.rolling(window=window, center=True, min_periods=2) .mean ()
print ('rolling mean calculated for all input data')
else:
df_smooth = df.copy ()
fig.text (0.95, 0.05, '"!!! timeseries too short for moving mean over 30years !!

fontsize=20, color='red',
ha='right', wva='bottom', alpha=0.5)
2 E ST LR EEEEE S EE LR L L DL

normalisation

x = pd.to_datetime (df_smooth.index.values)
ts_ref = x.get_loc(dt.strptime("1985", "%Y"), method='nearest')

ref_val = np.nanmean (df_smooth.values, axis=1) [ts_ref]
try:
df_sspl26 = df[sspl26].rolling(window=window, center=True, min_periods=2) .
—mean () - ref_val
df_ssp245 = df[ssp245].rolling(window=window, center=True, min_periods=2).
—mean () - ref_val
df_ssp585 = df[ssp585].rolling(window=window, center=True, min_periods=2) .
—mean () - ref_val
except Exception as e:
print ('failed to group scenarios {}'.format (e))
#HA#A AR A A A AR HAAHAS

calculation of mean and uncertainties

sspl2é

try:
sspl26_rmean = np.squeeze (df_sspl26.quantile([0.5], axis=1,) .values)
skipna=False quantile([0.5], axis=1, numeric _only=False)
sspl26_g05 = np.squeeze (df_sspl26.quantile([0.05], axis=1,) .values)
sspl26_g33 = np.squeeze (df_sspl26.quantile([0.33], axis=1l,) .values)
sspl26_g66 = np.squeeze (df_sspl26.quantile ([0.66], axis=1,) .values)
sspl26_9g95 = np.squeeze (df_sspl26.quantile([0.95], axis=1,) .values)
print ('quantile calculated for all input sspl26 data')

except Exception as e:
print ('failed to calculate quantiles: {}'.format (e))

ssp245

try:
ssp245_rmean = np.squeeze (df_ssp245.quantile([0.5], axis=1,) .values)
skipna=False quantile([0.5], axis=1, numeric_only=False)
ssp245_9g05 = np.squeeze (df_ssp245.quantile ([0.05], axis=1,).values)
ssp245_q9g33 np.squeeze (df_ssp245.quantile ([0.33], axis=1,).values)

ssp245_qg66 np.squeeze (df_ssp245.quantile ([0.66], axis=1,).values)
(continues on next page)

54 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

=

=3,

=3,

<—>3,

(continued from previous page)

ssp245_g95 = np.squeeze (df_ssp245.quantile ([0.95], axis=1,) .values)
print ('quantile calculated for all input ssp245 data')

except Exception as e:
print ('failed to calculate quantiles: {}'.format (e))

ssp585

try:
ssp585_rmean = np.squeeze (df_ssp585.quantile([0.5], axis=1,) .values)
skipna=False quantile([0.5], axis=1, numeric_only=False)

ssp585_9g05 = np.squeeze (df_ssp585.quantile([0.05], axis=1,).values)
ssp585_g33 = np.squeeze (df_ssp585.quantile ([0.33], axis=1,) .values)
ssp585_g66 = np.squeeze (df_ssp585.quantile ([0.66], axis=1,) .values)
ssp585_9g95 = np.squeeze (df_ssp585.quantile([0.95], axis=1,) .values)

print ('quantile calculated for all input sspb585 data')
except Exception as e:
print ('failed to calculate quantiles: {}'.format (e))

#EEFFEEAAAAAAFHAAAA
plot

try:
x = pd.to_datetime (df.index.values)
df[(df['date'] > '2000-6-1") & (df['date'] <= '2000-6-10")]
xl = x[x <= dt.strptime('2015-12-31"', "$Y-%m-3%d")]
x2 = x[len(x1l)-1:] # -1 to catch up with the last historical value

plt.fill between(x, sspl26_q05, sspl26_qg95, alpha=1l, color='lightgrey')
plt.fill between (x, ssp245_q05, ssp245_g95, alpha=1, color='lightgrey')
plt.fill between (x, ssp585_q05, ssp585 _qg95, alpha=1l, color='lightgrey')

plt.fill _between(xl, sspl26_qg05[:len(x1l)], sspl26_g95[:len(x1l)], alpha=1,
—color="lightgrey"')
plt.fill_between(xl, ssp245_g05[:1len(xl)], ssp245_9g95[:len(x1l)], alpha=1,_
—color="'lightgrey"')
plt.fill_between(xl, ssp585_g05[:len(xl)], ssp585_g9%5[:len(x1l)], alpha=1,_
—color="lightgrey"')

plt.fill between (x2, sspl26_gO05[len(x1l)-1:], sspl26_g95[len(x1l)-1:],
color=SSP_colors|['sspl26'])

plt.fill between (x2, ssp245_g05[len(x1l)-1:], ssp245_g95[len(x1l)-1:],
color=SSP_colors|['ssp245'])

plt.fill_between (x2, ssp585_g05[len(xl)-1:], ssp585_g9%5[len(xl)-1:],
color=SSP_colors|['ssp585'])

mean_hist = np.mean([sspl26_rmean[:len(xl)], ssp245_rmean[:len(xl)]

—rmean[:len(x1)]],axis=0)

plt.plot (x1, mean_hist , c='darkgrey',6 1lw=2)

’

alpha=0.
alpha=0.

alpha=0.

ssp245_

plt.plot (x1, ssp245 rmean(:len(x1)], c='dimgrey',6 1w=2)
plt.plot (x1, ssp245_rmean(:len(x1)], c='dimgrey',K 1w=2)
plt.plot (x2, sspb585_rmean[len(xl)-1:], c=SSP_colors|['ssp585'], 1lw=2)
plt.plot (x2, ssp245_rmean[len(xl)-1:], c=SSP_colors|['ssp245'], 1lw=2)
plt.plot (x2, sspl26_rmean[len(xl)-1:], c=SSP_colors|['sspl26'], lw=2)
(continues on next page)
4.1. Climate Data with Phyton 55

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

except Exception as e:
raise Exception('Failed to make plot. {}'.format (e))

plt.xlim(dt.strptime('1940-01-01"', "%Y-%m-3%d"), dt.strptime('2100-01-02"', "SY-Sm-—

~%d"))

ax]l.set_xticks (fontsize=16, rotation=45) # axl.set_
—xticklabels (rotation=45, fontsize=12)
plt.grid(axis='y') # .grid _line_alpha=0.3

plt.title(title)

from matplotlib.offsetbox import TextArea, VPacker, AnnotationBbox

from pylab import x*
fig = figure(1l)
ax = gca/()
texts = ['SSP 126','SSP 245','SSP 585', 'historique', 'observation']
colors = [SSP_colors|['sspl26'],SSP_colors|['ssp245'],SSP_colors|['ssp585'],
— 'darkgrey', 'black']
Texts = []

for t,c in zip(texts,colors):
Texts.append (TextArea (t, textprops=dict (color=c)))

texts_vbox = VPacker (children=Texts, pad=0, sep=0)

ann = AnnotationBbox (texts_vbox, (.02, .8), xycoords=ax.transAxes,
box_alignment=(0, .5),
bboxprops = dict (facecolor="'red', boxstyle="'round', alpha=0.5,

— color="'lightgrey'))
ann.set_figure (fiqg)
fig.artists.append (ann)

try:

plt.axvline (dt.strptime('1985-01-01"', "%Y-%m-%d"), color='gray', linestyle='-.
—', alpha=0.5)

plt.axvline (dt.strptime ('2030-01-01", "%Y-%m-2d"), color='gray', linestyle='—-
—', alpha=0.5)

plt.axvline (dt.strptime ('2050-01-01", "%Y-%m-2d"), color='gray', linestyle='—-
—', alpha=0.5)

plt.axvline (dt.strptime('2085-01-01"', "%Y-%m-2%d"), color='gray', linestyle='-—-
', alpha=0.5)

except:
raise Exception('Failed to make scatters')

include Observation
if observation is not None:
try:
import xarray as xr

ds = xr.open_dataset (observation, drop_variables='height', decode_
—cf=decode_cf)
if delta == 0:
obs = ds.to_dataframe ()
else:

(continues on next page)

56 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

obs = ds.to_dataframe () + delta

obs_rm = obs.rolling(window=window, center=True, min_periods=16) .mean ()
—# closed='right',

obs_rollmean = obs_rm - obs_rm.values[ts_ref]

if decode_cf is True:

mi = obs.index

plt.plot (mi.get_level values('time'), obs, c='black',6 1w=1,_
—~linestyle="'—--")

plt.plot (mi.get_level_values('time'), obs_rollmean, c='black',6 1lw=3,
—linestyle="'--")

else:

plt.plot (x, obs, c='black', 1lw=1l, linestyle='—--")

plt.plot (x, obs_rollmean, c='black',6K 1lw=3, linestyle='—--")
plt.scatter (dt.strptime('1985', "%Yy"), 12, c='black',6 s=20)
plt.annotate (12, (dt.strptime('1985', "%y"), 12), c='red')

except Exception as e:

raise Exception('Failed to plot observation {}'.format (e))
try:
output_png = fig2plot (fig=fig, file_extension=file_extension, dir_output=dir__
—output)
plt.close ()

except Exception as e:
raise Exception('Failed to make boxplots. {}'.format (e))

try:
out_csv = "/{}{}.csv".format (path_csv, variable)
arr = [x , obs_rollmean.values, sspl26_rmean, sspl26_qg05, sspl26_g95,
ssp245_rmean, ssp245_g05, ssp245_qg95,
ssp585_rmean, ssp585_qg05, ssp585_g95,]
pd.DataFrame (arr) .transpose () .to_csv (out_csv, header=['Date', 'OBS',
'sspl26_median',
—'sspl26_g05', 'sspl26_g95"',
'ssp245_median',
—'ssp245_qg05', 'ssp245_9g95',
'ssp585_median',
—'ssp585_g05', 'sspb85_g95"',
1)

except Exception as e:
raise Exception('failed to write csv file')

try:
fig = plt.figure()
ax = fig.add_subplot (111)
y = [1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1]

col_labels = ['1871-1900','1971-2000"','2001-2019"','2016-2045", '2036-2065",
—'2071-2100"]
row_labels = ['observation', 'sspl26', 'ssp245' ,'ssp585']

ts_refl8 = x.get_loc(dt.strptime("1885", "%Y"), method='nearest')

ts_ref = x.get_loc(dt.strptime("1985", "&%Y"), method='nearest')
(continues on next page)

4.1. Climate Data with Phyton 57

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

ts_15 = x.get_loc(dt.strptime ("2015", "&$Y") method="'nearest')
ts_30 = x.get_loc(dt.strptime("2030", "%Y"), method='nearest')
ts_50 = x.get_loc(dt.strptime ("2050", "%$Y"), method='nearest')
ts_85 = x.get_loc(dt.strptime ("2085", "%Y"), method='nearest')
table_vals = [[np.round(obs_rm.values|[ts_refl8],2)[0], np.round(obs_rm.
—values|[ts_ref],2)[0],
np.round (obs_rm.values[ts_15],2) (0], '-' , '=-', '-'], # [obs_
—rollmean[ts_ref]
[round (mean_hist[ts ref],2), '=-', '-', '-'],
['-', '=-','='", round(sspl26_rmean[ts_30],2), round(sspl26_
—rmean[ts_50],2),round(sspl26_rmean[ts_85],2)], # 126
['-', '=-','=", round(ssp245_rmean([ts_30],2), round(ssp245_

—rmean[ts_50],2), round(ssp245_rmean[ts_85],2)],

['-', '-','-'", round(ssp585_rmean([ts_30],2), round(ssp585_
—rmean[ts_50],2),round(ssp585_rmean|[ts_85],2)]

] # round(sspl26_rmean(ts_ref],2)

Draw table

the_table = plt.table(cellText=table_vals,
colWidths=[0.1] = 30,
rowLabels=row_labels,
colLabels=col_labels,
loc="center')

the_table.auto_set_font_size (False)

the_table.set_fontsize (24)

the_table.scale (4, 4)

Removing ticks and spines enables you to get the figure only with table

plt.tick_params (axis='x', which='both', bottom=False, top=False,
—labelbottom=False)

plt.tick_params (axis='y', which='both', right=False, left=False,
—labelleft=False)

for pos in ['right', 'top', 'bottom', 'left']:
plt.gca() .spines[pos].set_visible (False)
table_png = fig2plot (fig=fig, file_extension=file_extension, dir_output=dir_
—output)
plt.close ()

except Exception as e:
raise Exception('Failed to make table. {}'.format (e))

return output_png , table_png , out_csv

[94]: 1 = 13 # 13

indices_files = join(path_indices, indices[i])
files = [join(path_indices,indices[i],f) for f in listdir(indices_files)]
observation = join(path_obs, '{/_yr montsouris-observation.nc'.format (indices[i]))

[95]: output_png, table_png, csv_file = plot_ssp_uncertainty_anormalie (resource=files,
—variable=indices[i], title=titles([i],
observation=observation, decode_cf =
—False,
(continues on next page)

58 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

figsize=(10, 5), delta=deltali],
dir_output=path_pics
)

width=1000) # ,

Image (output_png, table_png

/home/nils/anaconda3/envs/flyingpigeon/lib/python3.7/site-packages/pandas/core/
—~indexing.py:671: SettingWithCopyWarning:
A value 1is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas—-docs/stable/
—user_guide/indexing.htmlfreturning—a-view—-versus—a—-copy
self._setitem_with_indexer (indexer, value)

all scenarios are seperated
rolling mean calculated for
quantile calculated for all
quantile calculated for all
quantile calculated for all

all input data

input sspl26 data
input ssp245 data
input sspb585 data

Nombre gelées nocturnes : (j/an)

30 A
SSP 126

SSP 585

20 1~ observation

h\-_

\
\
.-

10 A

-
“\,‘\

‘..\§D-I‘.\

—10 1

—20 1

1940 1960 1980 2000 2020 2040 2060 2080 2100

[24]: Image (table_png, width=1000)

[24]:

1871-1900

1971-2000

2001-2019

2016-2045

2036-2065

2071-2100

observation

104.04

111.0

108.85

sspl26

-2.63

-3.41

-5.11

ssp245

-5.93

-2.63

-5.71

ssp585

-0.63

-3.39

-5.61

[48]: # df_smooth.plot ()

(continues on next page)

4.1. Climate Data with Phyton 59

[47]:

[47]:

[154]:

[154]:

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

x = pd.to_datetime (df_smooth.index.values)
ts_ref = x.get_loc(dt.strptime("1985", "%Y"), method='nearest')
ref_val = np.nanmean (df_smooth.values, axis=1) [ts_ref]

NameError Traceback (most recent call last)
<ipython-input-48-b6ed47fd8£fd75> in

1 # df_smooth.plot ()

2
—-——-> 3 x = pd.to_datetime (df_smooth.index.values)

4 ts_ref = x.get_loc(dt.strptime ("1985", "%Y"), method='nearest')

5 ref_val = np.nanmean (df_smooth.values, axis=1) [ts_ref]

NamelError: name 'df_smooth' is not defined

import numpy
a = numpy.asarray([[1,2,3]1, [4,5,6], [7,8,9] 1)
numpy .savetxt ("foo.csv", a, delimiter=",", header='0OBS',)

pd.DataFrame?

dt = dt.strptime("2016", "%Y")

1f decode _cf is True:

mi = obs.index

plt.plot (mi.get_level values('time'), obs, c='black', 1w=1

7o
—~linestyle="'—-")
plt.plot (mi.get_level values('time'), obs_rollmean, c='black',6 1w=3,
— linestyle='—-=")
else:
plt.plot (x, obs, c='black', 1lw=1l, linestyle='—--")
plt.plot (x, obs_rollmean, c='black', 1w=3, linestyle='--")
ts_ref
135

ts = dt.strptime ("2016", "$Y")
x.index.get_loc(ts, method='nearest')

x.values[176]

array ([nan])

i =11 # 10 9 87 6 5

observation = join(path, '/{)}_yr_montsouris-observation.nc'.format (indices[i]))
ds = xr.open_dataset (observation, drop_variables='height', decode_cf=False)
df_obs = ds.to_dataframe ()

df_obs.plot ()

<matplotlib.axes._subplots.AxesSubplot at 0x7f8de8d8aed0>

60 Chapter 4. Tutorials

[51]:

Birdhouse Documentation, Release 0.7.0

— ti_days_above
35

30 A
25 1

20 4

D-

(4832666 0 FE 350 S R ST R f R B IRERR) B 1A TR0 ES439.0)
lat,lon,time

from birdy import WPSClient
from os import listdir, path

from shutil import move

from os.path import join

fp_url = 'http://localhost:8093"'

fp = WPSClient (url=fp_url, progress=True)

def plot_ssp_uncertainty(resource, variable, ylim=None, title=None, observation=None,
file_extension='png', delta=0, window=None, dir__
—output=None,
figsize=(10, 10)):

mmn

creates a png file containing the appropriate uncertainty plot.

:param resource: list of files containing the same variable

:param delta: set a delta for the values e.g. —-273.15 to convert Kelvin to Celsius

:param variable: variable to be visualised. If None (default), variable will be_,
—~detected

:param ylim: Y-axis limitations: tuple (min,max)

:param title: string to be used as title

:param observation:

:param figsize: figure size defult=(10,10)

:param window: windowsize of the rolling mean

:returns str: path/to/file.png

mrmmn

from flyingpigeon.plt_ncdata import ts_data

from flyingpigeon.nc_utils import sortssp_by_drsname

try:
fig, (axl, ax2) = plt.subplots(l, 2, figsize=figsize, facecolor='w', |,
—edgecolor="'k', sharey=True)
plt.subplots_adjust (wspace=0, hspace=0.2) #

fig = plt.figure (figsize=figsize, dpi=600, facecolor='w', edgecolor='k'")
LOGGER.debug ('Start visualisation spaghetti plot')
=== prepare invironment

(continues on next page)

4.1. Climate Data with Phyton 61

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

if type(resource) != list:
resource = [resource]
var = get_variable (nc)
if variable is None:
variable = get_variable (resource[0])
LOGGER.info ('plot values preparation done')
except Exception as ex:

W O¥ W W

print ("plot values preparation failed {}".format (ex))
LOGGER.exception (msg)
raise Exception (msg)
try:
dic = sortssp_by_drsname (resource) # sort_by_ filename (resource, historical_

—concatination=True)
df = ts_data(dic, delta=delta)
except Exception as ex:
print ("failed to sort data".format (e))

#FAERAAA A A A AR A A AHA AR H A A AR AAHAAA

serach datasets according to scenario

try:
sspll9 = [ds for ds in df.columns if 'sspll9' in ds]
sspl26 = [ds for ds in df.columns if 'sspl26' in ds]
ssp245 = [ds for ds in df.columns if 'ssp245' in ds]
ssp370 = [ds for ds in df.columns if 'ssp370' in ds]
ssp434 = [ds for ds in df.columns if 'ssp434' in ds]
ssp460 = [ds for ds in df.columns if 'ssp460' in ds]
ssp585 = [ds for ds in df.columns if 'ssp585' in ds]

print ('all scenarios are seperated')
except Exception as e:
print ('failed to split scenarios {}'.format (e))

window = 30 # 30 years

if len(df.index.values) >= window * 2:
TODO: calculate windowsize according to timestapms (day,mon,yr ... with get_
— frequency)
df_smooth = df.rolling(window=window, center=True) .mean ()
print ('rolling mean calculated for all input data')
else:
df_smooth = df.copy ()
print ('timeseries too short for moving mean')

fig.text (0.95, 0.05, '"!!! timeseries too short for moving mean over 30years !!
‘—>!',
fontsize=20, color='red',
ha='right', va='bottom', alpha=0.5)
try:
df_sspll9 = df[sspll9].rolling(window=window, center=True, min_periods=2) .
—mean ()
df_sspl26 = df[sspl26].rolling(window=window, center=True, min_periods=2) .
—mean ()
df_ssp245 = df[ssp245].rolling(window=window, center=True, min_periods=2) .
—mean ()

(continues on next page)

62 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

df_ssp370 = df[ssp370].rolling(window=window, center=True, min_periods=2).
—mean ()
df_ssp434 = df[sspd34].rolling(window=window, center=True, min_periods=2) .
—mean ()
df_ssp460 = df[ssp460].rolling(window=window, center=True, min_periods=2) .
—mean ()
df_ssp585 = df[ssp585].rolling(window=window, center=True, min_periods=2).
—mean ()
except Exception as e:
print ('failed to group scenarios {}'.format (e))
#H#A AR AR A FAAAAAHHAAAS

calculation of mean and uncertainties

sspll9

try:
sspll9_rmean = np.squeeze (df_sspll9.quantile([0.5], axis=1,) .values)
skipna=False quantile([0.5], axis=1, numeric_only=False)

sspll9_g05 = np.squeeze (df_sspll9.quantile([0.10], axis=1,).values)
sspll9_g33 = np.squeeze (df_sspll9.quantile([0.33], axis=1,) .values)
sspll9_g66 = np.squeeze (df_sspll9.quantile([0.66], axis=1,) .values)
sspll9_g95 = np.squeeze (df_sspll9.quantile([0.90], axis=1l,).values)

print ('quantile calculated for all input sspll9 data')
except Exception as e:
print ('failed to calculate quantiles: {}'.format (e))

sspl2é

try:
sspl26_rmean = np.squeeze (df_sspl26.quantile([0.5], axis=1,) .values)
skipna=False quantile([0.5], axis=1, numeric_only=False)

sspl26_g05 = np.squeeze (df_sspl26.quantile ([0.10], axis=1,) .values)
sspl26_g33 = np.squeeze (df_sspl26.quantile ([0.33], axis=1,) .values)
sspl26_g66 = np.squeeze (df_sspl26.quantile([0.66], axis=1l,).values)
sspl26_g95 = np.squeeze (df_sspl26.quantile ([0.90], axis=1,) .values)

print ('quantile calculated for all input sspl26 data')
except Exception as e:
print ('failed to calculate quantiles: {}'.format (e))

ssp245

try:
ssp245_rmean = np.squeeze (df_ssp245.quantile([0.5], axis=1,) .values)
skipna=False quantile([0.5], axis=1, numeric_only=False)

ssp245_g05 = np.squeeze (df_ssp245.quantile ([0.10], axis=1,) .values)

ssp245_9g33 = np.squeeze (df_ssp245.quantile([0.33], axis=1,) .values)

ssp245_g66 = np.squeeze (df_ssp245.quantile ([0.66], axis=1,) .values)
) o

ssp245_g95 = np.squeeze (df_ssp245.quantile ([0.90], axis=1,) .values)
print ('quantile calculated for all input ssp245 data')
except Exception as e:

print ('failed to calculate quantiles: {}'.format (e))

ssp370

try:
ssp370_rmean = np.squeeze (df_ssp370.quantile([0.5], axis=1,).values)
skipna=False quantile([0.5], axis=1, numeric_only=False)

ssp370_g05 = np.squeeze (df_ssp370.quantile ([0.10], axis=1,) .values)
(continues on next page)

4.1. Climate Data with Phyton 63

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

ssp370_g33 = np.squeeze (df_ssp370.quantile ([0.33], axis=1,) .values)
ssp370_g66 = np.squeeze (df_ssp370.quantile([0.66], axis=1l,).values)
ssp370_g95 = np.squeeze (df_ssp370.quantile ([0.90], axis=1,) .values)

print ('quantile calculated for all input ssp370 data')
except Exception as e:
print ('failed to calculate quantiles: {}'.format (e))

ssp460

try:
ssp460_rmean = np.squeeze (df_ssp460.quantile([0.5], axis=1,) .values)
skipna=False quantile([0.5], axis=1, numeric_only=False)

ssp460_qg05 = np.squeeze (df_ssp460.quantile([0.10], axis=1,) .values)
ssp460_qg33 = np.squeeze (df_ssp460.quantile ([0.33], axis=1,) .values)
ssp460_g66 = np.squeeze (df_sspd460.quantile([0.66], axis=1l,).values)
ssp460_qg95 = np.squeeze (df_ssp460.quantile([0.90], axis=1,) .values)

print ('quantile calculated for all input ssp460 data')
except Exception as e:
print ('failed to calculate quantiles: {}'.format (e))

ssp585

try:
ssp585_rmean = np.squeeze (df_ssp585.quantile([0.5], axis=1,) .values)
skipna=False quantile([0.5], axis=1, numeric_only=False)

ssp585_qg05 = np.squeeze (df_ssp585.quantile ([0.10], axis=1,) .values)

) o
ssp585_g33 = np.squeeze (df_ssp585.quantile ([0.33], axis=1,) .values)
ssp585_g66 = np.squeeze (df_ssp585.quantile([0.66], axis=1l,).values)
ssp585_g95 = np.squeeze (df_ssp585.quantile ([0.90], axis=1,) .values)
print ('quantile calculated for all input sspb585 data')

except Exception as e:
print ('failed to calculate quantiles: {}'.format (e))
#HE#AAAAAAAAAAAAAHAS
plot
try:
x = pd.to_datetime (df.index.values)
df[(df['date'] > '2000-6-1") & (df['date'] <= '2000-6-10")]
xl = x[x <= dt.strptime('2015-12-31"', "&Y-%m-%d")]
x2 = x[len(x1l)-1:] # -1 to catch up with the last historical value

axl.fill between (x, sspl26_g05, sspl26_g95, alpha=1, color='lightgrey')
axl.fill_between (x, ssp245_qg05, ssp245_g95, alpha=1, color='lightgrey')
axl.fill_between (x, ssp370_g05, ssp370_g95, alpha=1, color='lightgrey')
axl.fill between (x, ssp460_qg05, ssp460_g95, alpha=1, color='lightgrey')
axl.fill_between (x, ssp585_qg05, sspb585_g95, alpha=1, color='lightgrey')

axl.fill_between (x, sspl26_q9g33, sspl26_g66, alpha=1, color='darkgrey')
axl.fill between (x, ssp245_qg33, ssp245_g66, alpha=1, color='darkgrey')
axl.fill between (x, ssp370_g33, ssp370_g66, alpha=1, color='darkgrey')
axl.fill_between (x, ssp460_qg33, ssp460_g66, alpha=1, color='darkgrey')
axl.fill between (x, ssp585_qg33, ssp585_g66, alpha=1, color='darkgrey')

axl.plot (x1, sspl26_rmean[:len(x1l)], c='dimgrey',6 1lw=2)

axl.plot (x2, ssp585_rmean[len(xl)-1:], c=SSP_colors['ssp585'], 1lw=2)
(continues on next page)

64 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

axl.plot (x2, sspd460_rmean[len(xl)-1:], c=SSP_colors|['ssp460'], lw=2)
plt.plot (x2, ssp370_rmean[len(x1)-1:], c='#63bced’', 1w=2)
axl.plot (x2, ssp370_rmean[len(xl)-1:], c=SSP_colors['ssp370'], 1lw=2
axl.plot (x2, ssp245_rmean([len(xl)-1:], c=SSP_colors|['ssp245'], lw=2
axl.plot (x2, sspl26_rmean[len(x1l)-1:], c=SSP_colors|['sspl26'], 1lw=2
axl.plot (x2, sspll9_rmean[len(xl)-1:], c=SSP_colors['sspll9'], 1lw=2

left = 0.1
bottom = 0.1
top = 0.8
right = 0.8

ref_start = dt.strptime('1971-01-01"', "&Y-%m-23d")
ref_end = dt.strptime('2000-12-31", "&Y-%m-%d")

ref_start2 = dt.strptime('1985-01-01"', "%Y-%m-3d")
ref_end2 = dt.strptime('2015-12-31", "&$Y-%m-%d")

#E#RAFFRAFFRAFFRAFFAAFEAAFHAAAH

include les reference lines

try:
ref= np.nanmedian (np.mean (df[(df.index >= ref_ start)
& (df.index <= ref_end)]))

print ('ref = {}'.format (ref))
axl.hlines (ref, ref start, ref end,
colors='k', linestyles='solid',
label="'reference')
ax2.hlines(ref, 1.2, 7.5 , colors='grey', linestyles='solid',
label="'reference')
except Exception as e:
print ('failed to get the mean {}'.format (e))
print ('timeseries uncertainty plot done for $s' % variable)
except Exception as e:
raise Exception('failed to calculate quantiles. {}'.format (e))
try:
axl.plot (x, y)
plot (x, -y)
bp_ref = ax2.boxplot (np.ravel (df [sspl26] [len(sspl26_rmean)-131:-101].values),
positions = [1], widths = 0.1,
whis= (10, 90), sym='"', patch_artist=True)
for box in bp_ref['boxes']:
change outline color
box.set (color="red', linewidth=2)
change fill color
box.set (facecolor = 'lightgrey')
change hatch
box.set (hatch = '/")

(continues on next page)

4.1. Climate Data with Phyton 65

Birdhouse Documentation, Release 0.7.0

—rmean

He

—colors|[

—'darkgrey'))

(continued from previous page)

2030
bplots = ax2.boxplot ([np.ravel (df [sspl26] [len(sspl26_rmean)-85:-55].values),
np.ravel (df [ssp245] [len(sspl26_rmean)-85:-55] .values),
np.ravel (df [ssp460] [len(sspl26_rmean)-85:-55] .values),
np.ravel (df [ssp370] [len(sspl26_rmean)-85:-55] .values),
np.ravel (df [ssp585] [len (sspl26_rmean)-85:-55] .values)],
positions = [3.8,3.9,4,4.1,4.2], widths = 0.1,
whis= (10, 90), sym='"', patch_artist=True) # , ssp370_
plt.setp (bplots['boxes'] [0], color=SSP_colors['sspl26'])
plt.setp(bplots['boxes'][1], color=SSP_colors['ssp245'])
plt.setp(bplots['boxes'][2], color=SSP_colors|['ssp460'])
plt.setp(bplots['boxes'] [3], color=SSP_colors['ssp370'])
plt.setp(bplots['boxes'] [4], color=SSP_colors['ssp585'])
bplots = ax2.boxplot ([np.ravel (df [sspl26] [len(sspl26_rmean)-66:-35].values),
np.ravel (df [ssp245] [len(sspl26_rmean)-66:-35] .values),
np.ravel (df [ssp460] [len(sspl26_rmean)-66:-35] .values),
np.ravel (df [ssp370] [len(sspl26_rmean)-66:-35] .values),
np.ravel (df [ssp585] [len(sspl26_rmean)-66:-35] .values)],
positions = [4.8,4.9,5,5.1,5.2], widths = 0.1,
whis= (10, 90), sym='"', patch_artist=True)
plt.setp(bplots['boxes'] [0], color=SSP_colors['sspl26'])
plt.setp(bplots['boxes'] [1], color=SSP_colors['ssp245'])
plt.setp(bplots['boxes'] [2], color=SSP_colors['ssp460'])
plt.setp(bplots['boxes'] [3], color=SSP_colors['ssp370'])
plt.setp(bplots['boxes'] [4], color=SSP_colors['ssp585'])
bplots = ax2.boxplot([np.ravel(df[ssp126][len(ssp126_rmean) 31 -11.values),
np.ravel (df [ssp245] [len (sspl26_rmean) — 1] .values),
np.ravel (df [ssp460] [len(sspl26_rmean) — 1] .values),
np.ravel (df [ssp370] [len(sspl26_. rmean)73l 71] values),
np.ravel (df [ssp585] [len (sspl26_rmean) — 1] .values)],
positions = [6.8,6.9,7,7.1,7.2], w1dths = 0.1,
whis= (10, 90), sym='"', patch_artist=True)
plt.setp(bplots['boxes'][0], color=SSP_colors|['sspl26'])
plt.setp(bplots['boxes'][1], color=SSP_colors|['ssp245'])
plt.setp(bplots['boxes'] [2], color=SSP_colors['ssp460'])
plt.setp(bplots['boxes'] [3], color=SSP_colors['ssp370'])
plt.setp(bplots['boxes'] [4], color=SSP_colors['ssp585'])
from matplotlib.offsetbox import TextArea, VPacker, AnnotationBbox
from pylab import =*
fig = figure (1)
ax = gca/()
texts = ['SSP 126','SSP 245','SSP 460','SSP 370', 'SSP 585']
colors = [SSP_colors|['sspl26'],SSP_colors|'ssp245'],SSP_colors|['ssp460'], SSP_
'ssp370'],SSP_colors['ssp585']]
Texts = []

for t,c in zip(texts,colors):
Texts.append (TextArea (t, textprops=dict (color=c)))
texts_vbox VPacker (children=Texts, pad=0, sep=0)
ann AnnotationBbox (texts_vbox, (.02, .8), xycoords=axl.transAxes,
box_alignment=(0, .5),
bboxprops dict (facecolor=

= 'red',boxstyle=

'round',color=
(continues on next page)

66

Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

ann.set_figure (fig)
fig.artists.append (ann)

fig.suptitle(title, fontsize=15)

plt.yticks (fontsize=16,)
plt.ylim(ylim)

axl.set_xlim(dt.strptime('1900-01-01"', "&Y-%m-%d"), dt.strptime('2100-01-02",

S"EY-%m-3d"))
axl.set_xticks (fontsize=16, rotation=45) # axl.set_xticklabels (rotation=45, ,
—~fontsize=12)

axl.grid(axis="y") # .grid _line alpha=0.3

bp_ticks = [1,4,5,7]
bp_labels = ['ref71-2000"','2015-45','2035-65"', '2071-2100"]

ax2.set_xticks (bp_ticks)

ax2.set_xticklabels (bp_labels, rotation=45, fontsize=12)
ax2.set_xlables

ax2.spines['left'].set_visible (False)

setBoxColors (bp)

bd = plt.boxplot (ssp370_rmean[len (sspl26_rmean)-45:-15], positions = [4],_
—widths = 0.1,) # , ssp370_rmean

bd = plt.boxplot (ssp585_rmean([len(sspl26_rmean)-45:-15], positions = [5], .,
—widths = 0.1) # , ssp370_rmean

setBoxColors (bp)

except Exception as e:

raise Exception('Failed to make boxplots. {}'.format (e))
252578
output_png = fig2plot (fig=fig, file_extension=file_extension, dir_output=dir__
—output)
plt.close()

except Exception as e:
raise Exception('Failed to make boxplots. {}'.format (e))

return output_png

[64]: i = 3
indices_files = join(path_indices, indices[i])
files = [join(path_indices,indices[i], f) for f in listdir(indices_files)]

plot = plot_ssp_uncertainty(files, indices[i], title=titles[i],
figsize=(10, 5), delta=-273.15,
dir_output=path_pics)

Image (plot, width=1000)

4.1. Climate Data with Phyton 67

[61]:

[19]:

Birdhouse Documentation, Release 0.7.0

all scenarios are seperated

rolling mean calculated for all input data
quantile calculated for all input sspll9 data
quantile calculated for all input sspl26 data
quantile calculated for all input ssp245 data
quantile calculated for all input ssp370 data
quantile calculated for all input ssp460 data
quantile calculated for all input ssp585 data
ref = 877.0137451171875

timeseries uncertainty plot done for prcptot

Precipitation somme par an

SSP 126

1000 - . ‘ -
SSP 370 ; I
SSP 585
900 - ﬁ
800 -
700 . I I I
600 - -

500 + .
1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100 Q %) 5 Q
$ ¥ 6 S
1) el v
N N N
Q »oo Q
& v
i=14# 11 # 10 9 87 6 5
indices_files = join(path_indices, indices[i])
files = [join(path_indices,indices[i],f) for f in listdir(indices_files)]

out = fp.plot_spaghetti(files, title=titles[i], figsize=(10, 5))

HBox (children=(IntProgress (value=0, bar_style='info', description='Processing:"'),
—Button (button_style="'danger'...

owslib.wps.WPSException : {'code': 'NoApplicableCode', 'locator': 'None', 'text':
—"Process error: method=wps_plot_spaghetti.py._handler, line=162, msg=spaghetti plot
—~failed : plot values preparation failed from bounds () missing 1 required positional,
—argument: 'height'"}

from flyingpigeon.plt_ncdata import ts_data
from flyingpigeon.nc_utils import sortssp_by_drsname

dic = sortssp_by drsname (files) # sort_by filename (resource, historical_

—concatination=True) (continues on next page)

68 Chapter 4. Tutorials

[55]:

[55]:

[175]:

Birdhouse Documentation, Release 0.7.0

(continued from previous page)
df = ts_data(dic, delta=delta)

out.get ()

plot_spaghettiResponse (
plotout_spaghetti="http://127.0.0.1:8093/outputs/cf23803a-dc9d-1lea-9ff5—

—9cb6d08a53e7/tmptgslcj6l.png’

)

def setBoxColors (bp) :
plt.setp(bp['boxes'] [0], color='blue')

[
plt.setp(bp['caps'][0], color='blue')
plt.setp(bp['caps'][1l], color='blue')
plt.setp(bp['whiskers'] [0], color='blue')

plt.setp(bp['whiskers'][1l], color="'blue')

plt.setp(bp['fliers'][0], color='blue')

plt.setp(bp['fliers'][1], color='blue')
plt.setp(bp['medians'] [0], color='blue')

H

plt.setp(bp['boxes'][1], color='red')
plt.setp(bpl['caps'][2], color='red'")
plt.setp(bp['caps'][3], color='red')
plt.setp (bp['whiskers'][2], color='red')
plt.setp(bp['whiskers'][3], color='red'")
plt.setp(bp['fliers'][2], color='red')
plt.setp(bp['fliers'][3], color='red')

plt.setp(bp['medians'] [1], color='red')

ref_start = dt.strptime('1971-01-01', "&Y-%m-23d")
ref_end = dt.strptime('2000-12-31", "&Y-%m-3d")

fig, axes = plt.subplots (ncols=3, sharey=True)
fig.subplots_adjust (wspace=0)

ax.boxplot ([data[name] [item] sspl26_rmean|[len (sspl26_rmean)-45:-15]

=

for item in ['A', 'B', 'C']])
ax.set (xticklabels=['A', 'B', 'C'], xlabel=name)
ax.margins (0.05) # Optional

H

fig, (axl, ax2) = plt.subplots(l, 2)
fig.suptitle ('Temperature annuelle')

axl.plot (x, y)
plot (x, -y)

bplots = ax2.boxplot ([sspl26_rmean[len(sspl26_rmean)-145:-115],
ssp370_rmean([len(sspl26_rmean)-145:-115],

ssp585_rmean([len(sspl26_rmean)-145:-115]],
positions = [0.8,1,1.2], widths = 0.1) # , ssp370_rmean

bplots|['boxes'] [0].set_fa

(continues on next page)

4.1. Climate Data with Phyton 69

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

fill with colors
colors = ['pink', 'lightblue', 'lightgreen']

bplotl = ax2.boxplot (ssp585_rmean[len (ssp585_rmean)-45:-15],
positions = [2], widths = 0.1, patch_artist=True)

bplot2 = ax2.boxplot (ssp585_rmean[len (ssp585_rmean)-45:-15],
positions = [2.2], widths = 0.1, patch_artist=True)

colors =

for bp in (bdl,bd2)

for patch, color in zip(bp['boxes'], ['blue', 'green']):
patch.set_facecolor (color)

fill with colors
colors = ['pink', 'lightblue', 'lightgreen']
for bplot in (bplotl, bplot2):
for patch, color in zip (bplot['boxes'], colors):
patch.set_facecolor (color)

bd = ax2.boxplot ([sspl26_rmean[len(sspl26_rmean)-45:-15],

ssp370_rmean[len(sspl26_rmean)-45:-15],
ssp585_rmean([len(sspl26_rmean)-45:-15]]

positions = [3.8,4,4.2], widths = 0.1) # , ssp370_rmean

14

bp['boxes'][0,1,2], color='red'

ticks = [1,2,4]
labels = ['2016-45','2036-2065" , '2071-2100"]

ax2.xlable
plt.xticks (ticks, labels)

ax2.spines['left'].set_visible (False)

setBoxColors (bp)
bd = plt.boxplot (ssp370_rmean[len (sspl26_rmean)-45:-15], positions = [4], widths =,
—0.1,) # , ssp370_rmean

bd = plt.boxplot (ssp585_rmean[len (sspl26_rmean)-45:-15], positions = [5], widths =,
—0.1) # , ssp370_rmean
setBoxColors (bp)

70 Chapter 4. Tutorials

[177]:

[176]:

Birdhouse Documentation, Release 0.7.0

Temperature annuelle

10

16 -
0.5 - 15 -
0.6 - 14 -
13 -
04 - 2
12 -
0.2 1
11 - ggd
0.0 T T T T

00 02 04 06 08 10 2016-2636-2065 2071-2100

for key , values in bplotl.items/() :
for medline in bplotl[key]:
85578
linedata = medline.get_xdata()
print('"{} : {}'.format (key, linedata))
except Exception as e:
print ('failed to get data')

whiskers : [2. 2.]
whiskers : [2. 2.]
caps : [1.975 2.025]

caps : [1.975 2.025]
failed to get data
medians : [1.95 2.05]
fliers : []

for key, value in bplotl.items():
val = [v.get_data() for v in value]
print (key, wval)

['medians']
res = {key : [v.get_data() for v in value] for key, value in bplotl.items()}

whiskers [(array([2., 2.]), array([14.05755857, 13.72003886])), (array([2., 2.1),.
—array ([15.26835963, 15.91097972]))]

caps [(array([1.975, 2.025]), array([13.72003886, 13.72003886])), (array([1.975, 2.
—025]), array([15.91097972, 15.91097972]))]

AttributeError Traceback (most recent call last)
<ipython-input-176-7e24ba9c56c9> in
1 for key, value in bplotl.items /() :

———> 2 val = [v.get_data() for v in value]

3 print (key, wval)

4

5 # ['medians']
<ipython—-input-176-7e24ba9c56c9> in (.0)

(continues on next page)

4.1. Climate Data with Phyton 71

[168]:

[168]:

[171]:

[171]:

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

1 for key, value in bplotl.items () :
—_———> 2 val = [v.get_data() for v in value]
3 print (key, wval)

4
5 # ['medians']

AttributeError: 'PathPatch' object has no attribute 'get_data'

bplotl.items ()

dict_items ([('whiskers', [<matplotlib.lines.Line2D object at 0x7f£640%aa67d0>,
—<matplotlib.lines.Line2D object at 0x7£6409aa6d50>]), ('caps', [<matplotlib.lines.
—Line2D object at 0x7£6409%abc2d0>, <matplotlib.lines.Line2D object at 0x7£6409%abc810>
1), ('boxes', [<matplotlib.patches.PathPatch object at 0x7£640ale90d0>]), ('medians
—"', [<matplotlib.lines.Line2D object at 0x7f6409%abcdl0>]), ('fliers', [<matplotlib.
—~lines.Line2D object at 0x7£6409a8£250>]), ('means', [])])

medline.

<matplotlib.patches.PathPatch at 0x7£640ale90d0>

def plot_ssp_uncertainty_reduced(resource, variable, ylim=None, title=None,
—observation=None, decode_cf=True,

file_extension='png', delta=0, window=None, dir__
—output=None,

figsize=(10, 10)):

mmn

creates a png file containing the appropriate uncertainty plot.

:param resource: list of files containing the same variable

:param delta: set a delta for the values e.g. —-273.15 to convert Kelvin to Celsius

:param variable: variable to be visualised. If None (default), variable will be_,
—detected

:param ylim: Y-axis limitations: tuple (min,max)

:param title: string to be used as title

:param observation: optional data of observations

:param figsize: figure size defult=(10,10)

:param decode_cf: decode of netCDF values according cf convention

:param window: windowsize of the rolling mean

:returns str: path/to/file.png
from flyingpigeon.plt_ncdata import ts_data
from flyingpigeon.nc_utils import sortssp_by_drsname

try:
fig = plt.figure(figsize=figsize, facecolor='w', edgecolor='k")
ax = fig.add_subplot (111)
plt.subplots_adjust (wspace=0, hspace=0.2)

fig = plt.figure (figsize=figsize, dpi=600, facecolor='w', edgecolor='k'")
LOGGER.debug ('Start visualisation spaghetti plot')
=== prepare invironment
if type(resource) != list:
resource = [resource]
var = get_variable (nc)
(continues on next page)

72 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

if variable is None:
variable = get_variable (resource[0])
LOGGER.info ('plot values preparation done')
except Exception as ex:
print ("plot values preparation failed {}".format (ex))
LOGGER.exception (msg)
raise Exception (msg)
try:
dic = sortssp_by_drsname (resource) # sort_by_ filename (resource, historical__

—concatination=True)
df = ts_data(dic, delta=delta)
except Exception as ex:
print ("failed to sort data".format (ex))

#HAF AR FA AR FA AR FAF AR F AR FAA A

serach datasets according to scenario

try:
sspl26 = [ds for ds in df.columns if 'sspl26' in ds]
ssp245 [ds for ds in df.columns if 'ssp245' in ds]
ssp585 [ds for ds in df.columns if 'ssp585' in ds]

print ('all scenarios are seperated')
except Exception as e:
print ('failed to split scenarios {}'.format (e))

window = 30 # 30 years

if len(df.index.values) >= window * 2:

TODO: calculate windowsize according to timestapms (day,mon,yr ... with get_
— frequency)
df_smooth = df.rolling(window=window, center=True) .mean ()
print ('rolling mean calculated for all input data')
else:
df_smooth = df.copy ()
fig.text (0.95, 0.05, '!!! timeseries too short for moving mean over 30years !!
‘—)!',
fontsize=20, color='red',
ha="'right', va='bottom', alpha=0.5)
try:
df_sspl26 = df[sspl26].rolling(window=window, center=True, min_periods=2).
—mean ()
df_ssp245 = df[ssp245].rolling(window=window, center=True, min_periods=2) .
—mean ()
df_ssp585 = df[ssp585] .rolling (window=window, center=True, min_periods=2) .
—mean ()
except Exception as e:
print ('failed to group scenarios {}'.format (e))
#HHAHARAHAAHAHAAARAA

calculation of mean and uncertainties

sspl2é
try:
sspl26_rmean = np.squeeze (df_sspl26.quantile([0.5], axis=1,) .values)
(continues on next page)

4.1. Climate Data with Phyton 73

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

skipna=False quantile([0.5], axis=1, numeric_only=False)

sspl26_g05 = np.squeeze (df_sspl26.quantile([0.05], axis=1,) .values)
sspl26_g33 = np.squeeze (df_sspl26.quantile ([0.33], axis=1,) .values)
sspl26_g66 = np.squeeze (df_sspl26.quantile([0.66], axis=1,) .values)
sspl26_9g95 = np.squeeze (df_sspl26.quantile([0.95], axis=1,) .values)
print ('quantile calculated for all input sspl26 data')

except Exception as e:
print ('failed to calculate quantiles: {}'.format (e))

ssp245

try:
ssp245_rmean = np.squeeze (df_ssp245.quantile([0.5], axis=1,) .values)
skipna=False quantile([0.5], axis=1, numeric_only=False)
ssp245_9g05 = np.squeeze (df_ssp245.quantile([0.05], axis=1,) .values)
ssp245_qg33 = np.squeeze (df_ssp245.quantile([0.33], axis=1,) .values)

ssp245_qg66

ssp245_9g95 = np.squeeze (df_ssp245.quantile([0.95], axis=1,

print ('quantile calculated for all input ssp245 data')
except Exception as e:
print ('failed to calculate quantiles: {}'.format (e))

ssp585
try:

) o

) o
np.squeeze (df_ssp245.quantile ([0.66], axis=1,).values)

) o

values)

ssp585_rmean = np.squeeze (df_ssp585.quantile([0.5], axis=1,) .values)
skipna=False quantile([0.5], axis=1, numeric_only=False)

ssp585_g05 = np.squeeze (df_ssp585.quantile ([0.05], axis

ssp585_g33 = np.squeeze (df_ssp585.quantile ([0.33], axis

sspb585_g66 = np.squeeze (df_ssp585.quantile([0.66], axis

ssp585_g95 = np.squeeze (df_ssp585.quantile ([0.95], axis

print ('quantile calculated for all input sspb585 data')
except Exception as e:

=1,) .values)
=1,) .values)
=1,).values)
=1,) .values)

print ('failed to calculate quantiles: {}'.format (e))
#H#A#A AR AAFAAAHAAAS
plot
try:
x = pd.to_datetime (df.index.values)
df[(df['date'] > '2000-6-1') & (df['date'] <= '2000-6-10")]
x1l = x[x <= dt.strptime('2015-12-31"', "&$Y-%m-3%d")]
x2 = x[len(x1)-1:] # -1 to catch up with the last historical value
plt.fill between (x, sspl26_q05, sspl26_qg95, alpha=1, color='lightgrey')
plt.fill between (x, ssp245_q05, ssp245 _q95, alpha=1l, color='lightgrey')
plt.fill between (x, ssp585_g05, ssp585_g95, alpha=1, color='lightgrey')

plt.fill between(xl, sspl26_gO5[:1len(x1l)], sspl26_g95(:
—color="lightgrey"')

plt.fill_between(xl, ssp245_g05[:len(x1l)], ssp245_qg95[:
—color="lightgrey"')

plt.fill_between(xl, ssp585_g05[:1len(x1l)], ssp585_qg95([:
—color="lightgrey"')

len(x1l)], alpha=1,_
len(x1)], alpha=1,

len(x1l)], alpha=1,

plt.fill_between(x2, sspl26_g05[len(xl)-1:], sspl26_g95[len(x1l)-1:], alpha=0.

-3, color=SSP_colors|['sspl26'])

(continues on next page)

74

Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)
plt.fill_between (x2, ssp245_qg05([len(xl)-1:], ssp245_g95[len(x1l)-1:], alpha=0.
—3, color=SSP_colors|['ssp245'])
plt.fill_between (x2, ssp585_g05[len(xl)-1:], ssp585_g95[len(x1l)-1:], alpha=0.
—3, color=SSP_colors|['ssp585'])

mean_hist = np.mean([sspl26_rmean[:len(xl)], ssp245_rmean[:len(x1l)] , ssp245_
—rmean[:len(x1)]],axis=0)

plt.plot (x1, mean_hist , c='darkgrey',K 1lw=2)

plt.plot (x1, ssp245 rmean(:len(x1)], c='dimgrey',6 1w=2)
plt.plot (x1, ssp245 rmean(:len(x1)], c='dimgrey',K 1w=2)
plt.plot (x2, sspb585_rmean[len(xl)-1:], c=SSP_colors['sspb585'], lw=2)
plt.plot (x2, ssp245_rmean[len(xl)-1:], c=SSP_colors|['ssp245'], 1lw=2)
plt.plot (x2, sspl26_rmean[len(xl)-1:], c=SSP_colors['sspl26'], 1lw=2)
except Exception as e:
raise Exception('Failed to make plot. {}'.format (e))
plt.xlim(dt.strptime('1940-01-01"', "&Y-%m-2d"), dt.strptime('2100-01-02"', "SY-%m-
2d"))
axl.set_xticks (fontsize=16, rotation=45) # axl.set_
—xticklabels (rotation=45, fontsize=12)
plt.grid(axis='y') # .grid _line_alpha=0.3
plt.title(title)
from matplotlib.offsetbox import TextArea, VPacker, AnnotationBbox
from pylab import x*
fig = figure (1)
ax = gca()
texts = ['SSP 126','SSP 245','SSP 585', 'historique', 'observation']
colors = [SSP_colors|'sspl26'],SSP_colors|['ssp245'],SSP_colors|['ssp585'],

— 'darkgrey', 'black']
Texts = []
for t,c in zip(texts,colors):
Texts.append (TextArea (t, textprops=dict (color=c)))
texts_vbox = VPacker (children=Texts, pad=0, sep=0)
ann = AnnotationBbox (texts_vbox, (.02, .8), xycoords=ax.transAxes,
box_alignment=(0, .5),
bboxprops = dict (facecolor="'red',boxstyle="'round', alpha=0.5,
— color="lightgrey'))
ann.set_figure (fig)
fig.artists.append (ann)

try:
plt.axvline (dt.strptime('1985-01-01", "%$Y-%m-%d"), color='gray', linestyle='-.
"', alpha=0.5)

plt.axvline (dt.strptime('2030-01-01"', "$Y-%m-%d"), color='gray', linestyle='-—-
—', alpha=0.5)

plt.axvline (dt.strptime ('2050-01-01"', "%Y-%m-2d"), color='gray', linestyle='——
— "', alpha=0.5)

plt.axvline (dt.strptime('2085-01-01"', "$Y-%m-%d"), color='gray', linestyle='—-
«', alpha=0.5) (continues on next page)

4.1. Climate Data with Phyton 75

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

except:
raise Exception('Failed to make scatters')

include Observation
if observation is not None:
try:
import xarray as xr

ds = xr.open_dataset (observation, drop_variables='height', decode_
—cf=decode_cf)
if delta == 0:
obs = ds.to_dataframe ()
else:

obs = ds.to_dataframe () + delta

obs_rollmean = obs.rolling(window=window, center=True, min_periods=16).
—mean () # closed='right',

if decode_cf is True:

mi = obs.index

plt.plot (mi.get_level values('time'), obs, c='black', 1w=1,_
—~linestyle="'—--")

plt.plot (mi.get_level_values('time'), obs_rollmean, c='black',6 1lw=3,
—~linestyle="'--")

else:

plt.plot (x, obs, c='black', 1lw=1l, linestyle='—--")

plt.plot (x, obs_rollmean, c='black',6K 1lw=3, linestyle='—--")
plt.scatter (dt.strptime('1985', "8%Yy"), 12, c='black',6 s=20)
plt.annotate (12, (dt.strptime('1985', "%y"), 12), c='red')

except Exception as e:

raise Exception('Failed to plot observation {}'.format (e))
252578
output_png = fig2plot (fig=fig, file_extension=file_extension, dir_output=dir__
—output)
plt.close()

except Exception as e:
raise Exception('Failed to make boxplots. {}'.format (e))

try:
fig = plt.figure()
ax = fig.add_subplot (111)
y = [1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1]
col_labels = ['1971-2000','2016-2045"', '2036-2065"', '2071-2100"]
row_labels = ['observation', 'hist (moyen)', 'sspl26', 'ssp245' , 'ssp585']

ts_ref = x.get_loc(dt.strptime("1985", "%Y"), method='nearest')
ts_30 = x.get_loc(dt.strptime("2030", "%Y"), method='nearest')
ts_50 x.get_loc(dt.strptime ("2050", "%Y"), method='nearest')
ts_85 = x.get_loc(dt.strptime ("2085", "%Y"), method='nearest')

table_vals = [[np.round(obs_rollmean.values([ts_ref],2)[0], '=-"'" , '=', '='1, #,

— [obs_rollmean[ts_ref]
(continues on next page)

76 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

[round (mean_hist [ts_ref],2), '-', '=-', '-'],

[round (sspl26_rmean([ts_ref],2) , round(sspl26_rmean[ts_30],2),
—round (sspl26_rmean[ts_50],2), round(sspl26_rmean[ts_85],2)], # 126

[round (ssp245_rmean[ts_ref],2), round(ssp245_rmean([ts_30],2),
—round (ssp245_rmean[ts_50],2), round(ssp245_rmean[ts_85],2)],

[round (ssp585_rmean([ts_ref],2), round(ssp585_rmean[ts_30]1,2), .
—round (ssp585_rmean[ts_50],2), round (ssp585_rmean([ts_85],2)]

]

Draw table

the_table = plt.table(cellText=table_vals,
colWidths=[0.1] = 30,
rowLabels=row_labels,
colLabels=col_labels,
loc="center")

the_table.auto_set_font_size (False)

the_table.set_fontsize (24)

the_table.scale (4, 4)

Removing ticks and spines enables you to get the figure only with table

plt.tick_params(axis='x', which='both', bottom=False, top=False,
—labelbottom=False)

plt.tick_params (axis='y', which='both', right=False, left=False,
—~labelleft=False)

for pos in ['right', 'top', 'bottom', 'left']:

plt.gca() .spines[pos].set_visible (False)
table_png = fig2plot (fig=fig, file_extension=file_extension, dir_output=dir_
—output)
plt.close ()

except Exception as e:
raise Exception('Failed to make table. {}'.format (e))

return output_png , table_png

import matplotlib.pyplot as plt
import numpy as np
import random

data = {}

data['datasetl'] {1}
data['dataset2'] {}
data['dataset3'] = {}

n = 500

for k,v in data.keys():
upper = random.randint (0, 1000)
v['A'] np.random.uniform (0, upper, size=n)
v['B'] = np.random.uniform (0, upper, size=n)
v[i'C"] np.random.uniform (0, upper, size=n)

fig, axes = plt.subplots(ncols=3, sharey=True)
fig.subplots_adjust (wspace=0)

(continues on next page)

4.1. Climate Data with Phyton 77

[16]:

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

for ax, name in zip(axes, ['datasetl', 'dataset2', 'dataset3']):
ax.boxplot ([data[name] [item] for item in ['A', 'B', 'C']])
ax.set (xticklabels=["'A', 'B', 'C'], xlabel=name)
ax.margins (0.05) # Optional

plt.show ()
ValueError Traceback (most recent call last)
<ipython-input-15-3fd229b84c63> in
9

10 n =
-———> 11 for k,v in data.keys/():

12 upper = random.randint (0,)

13 v['A'] = np.random.uniform (0, upper, size=n)

ValueError: too many values to unpack (expected 2)

Some fake data to plot
A= [[1, 2, 5,1, [7, 211
B = [[5, 7, 2, 2, 5, [7, 2, 5]]
CcC = 1I[3,2,5,71, [6, 7, 311

fig = plt.figure()
ax = plt.axes()
hold(True)

first boxplot pair
bp = plt.boxplot (A, positions = [1, 2], widths = 0.6)
setBoxColors (bp)

second boxplot pair
bp = plt.boxplot (B, positions = [4, 5], widths = 0.6)
setBoxColors (bp)

thrid boxplot pair
bp = plt.boxplot (C, positions = [7, 8], widths
setBoxColors (bp)

Il
o
o)

set axes limits and labels
plt.x1im (0, 9)

plt.ylim (0, 9)
ax.set_xticklabels(['A', 'B', 'C'])
ax.set_xticks([1.5, 4.5, 7.5])

draw temporary red and blue lines and use them to create a legend
hB, = plot([1,1],'b-")

hR, = plot([1,1],'r-")

legend((hB, hR), ('Apples', 'Oranges'))

hB.set_visible (False)

hR.set_visible (False)

savefig ('boxcompare.png')
show ()

(continues on next page)

78 Chapter 4. Tutorials

[111]:

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

TypeError Traceback (most recent call last)
<ipython-input-16-7£1623cbd218> in

27

28 # draw temporary red and blue lines and use them to create a legend
-——> 29 hB, = plot([1,1],'b-")

30 hR, = plot([1,1],"'r=")
31 legend((hB, hR), ('Apples', 'Oranges')

TypeError: 'str' object is not callable

7 -

N Il

5 -

a4

: [

2 -

14

H T T T

A B C

plot = plot_ssp_spaghetti (resource=files, variable='tg mean', figsize=(15,3), delta=-
—273.15)

spaghetti plot failed for /home/nils/ramboll/paris/data/indices/tg-mean/tg-mean_yr_
—CNRM-CM6-1-HR_ssp245_rlilplf2 _gr_2065-2100.nc : x and y can be no greater than 2-D,
—but have shapes (36,) and (36, 2, 3)

spaghetti plot failed for /home/nils/ramboll/paris/data/indices/tg-mean/tg-mean_yr_
—CNRM-CM6-1-HR_ssp585_rlilplf2 gr_2065-2100.nc : x and y can be no greater than 2-D,
—but have shapes (36,) and (36, 2, 3)

spaghetti plot failed for /home/nils/ramboll/paris/data/indices/tg-mean/tg-mean_yr_
—CNRM-CM6-1-HR_ssp370_rlilplf2 gr_2065-2100.nc : x and y can be no greater than 2-D,
—but have shapes (36,) and (36, 2, 3)

spaghetti plot failed for /home/nils/ramboll/paris/data/indices/tg-mean/tg-mean_yr_
—CNRM-CM6-1-HR_historical_ rlilplf2_gr_2000-2014.nc : x and y can be no greater than,
—~2-D, but have shapes (15,) and (15, 2, 3)

spaghetti plot failed for /home/nils/ramboll/paris/data/indices/tg-mean/tg-mean_yr_
—CNRM-CM6-1-HR_historical_ rlilplf2_gr_1900-1949.nc : x and y can be no greater than,
—~2-D, but have shapes (50,) and (50, 2, 3)

spaghetti plot failed for /home/nils/ramboll/paris/data/indices/tg-mean/tg-mean_yr_
—CNRM-CM6-1-HR_historical_ rlilplf2_gr_1950-1999.nc : x and y can be no greater than,
—~2-D, but have shapes (50,) and (50, 2, 3)

spaghetti plot failed for /home/nils/ramboll/paris/data/indices/tg-mean/tg-mean_yr_
—CNRM-CM6-1-HR_ssp245_rlilplf2 gr_2015-2064.nc : x and y can be no greater than 2-D,
—but have shapes (50,) and (50, 2, 3)

spaghetti plot failed for /home/nils/ramboll/paris/data/indices/tg-mean/tg-mean_yr_
—CNRM-CM6-1-HR_historical_ rlilplf2_gr_1850-1899.nc : x and y can be no greater than,
—~2-D, but have shapes (50,) and (50, 2, 3)

spaghetti plot failed for /home/nils/ramboll/paris/data/indices/tg-mean/tg-mean_yr_
—CNRM-CM6-1-HR_sspl26_rlilplf2 gr_2065-2100.nc : x and y can be no greater than 2-D,
—but have shapes (36,) and (36, 2, 3) (continues on next page)

4.1. Climate Data with Phyton 79

[112]:

[112]:

[76]:

[78]:

Birdhouse Documentation, Release 0.7.0

(continued from previous page)
spaghetti plot failed for /home/nils/ramboll/paris/data/indices/tg-mean/tg-mean_yr_
—CNRM-CM6-1-HR_sspb585_rlilplf2_gr_2015-2064.nc : x and y can be no greater than 2-D,
—but have shapes (50,) and (50, 2, 3)
spaghetti plot failed for /home/nils/ramboll/paris/data/indices/tg-mean/tg-mean_yr_
—CNRM-CM6-1-HR_ssp370_rlilplf2_gr_2015-2064.nc : x and y can be no greater than 2-D,
—but have shapes (50,) and (50, 2, 3)
spaghetti plot failed for /home/nils/ramboll/paris/data/indices/tg-mean/tg-mean_yr_
—CNRM-CM6-1-HR_sspl26_rlilplf2_ gr_2015-2064.nc : x and y can be no greater than 2-D,
—but have shapes (50,) and (50, 2, 3)
timeseries spaghetti plot done for tg_mean with 166 lines.

Image (plot)

20

18+
16
14
12

files = [join('/home/nils/ramboll/paris/data/indices/tg-mean',f) for f in listdir(
—'data/indices/tg-mean')]

HBox (children=(IntProgress (value=0, bar_style='info', description='Processing:'),
—Button (button_style="'danger'...

80 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

[78] .
Field mean of tg_mean
289 -
288
287 -
286 -
285
284 4
283
Q)Q "19 Q)Q QQ b‘Q ‘bQ
& o o Q N O
N N N Vv Vv Vv
[14]: # if len(resource) > 1:
LOGGER.debug ('sort_by_filename module start sorting %s files' %,
—len (resource))
LOGGER.debug ('resource is list with %s files' % len(resource))
try: # 1if len(resource) > 1:
collect the different experiment names
#
LOGGER.info ('found %s datasets', len(nc_datasets.keys()))
except Exception:

(continues on next page)

4.1. Climate Data with Phyton 81

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

LOGGER.exception('failed to find names of datasets!')
LOGGER. info ('check for historical/RCP datasets')

try:
if historical_concatination is True:
select only necessary names
rcp_datasets = nc_datasets.copy ()
if any (" _rcp" in s for s in nc_datasets.keys()):
for key in nc_datasets.keys():
if 'historical' in key:
rcp_datasets.pop (key)
nc_datasets = rcp_datasets.copy ()
LOGGER.info ('historical data set names removed from dictionary')
else:
LOGGER.info ('no RCP dataset names found in dictionary')
except Exception:
LOGGER.exception('failed to pop historical data set names!')
LOGGER. info ('start sorting the files')

S o R H R R R O H R R R R R R R R

try:
for key in nc_datasets:
try:
1f historical concatination 1is False:
for n in resource:
if '%s_' % key 1in n:
nc_datasets[key] .append (path.abspath (n)) # path.

S R R W R

HjOin (p/ n))

elif historical_concatination 1is True:
key_hist = key.replace('rcp26', 'historical').\
replace('rcp45', 'historical') .\
replace ('rcpé65', 'historical').\
replace ('rcp85', 'historical')
for n in resource:
if '"{}_'.format (key_hist) in n:
nc_datasets[key] .append (path.abspath (n))
if '{}_'.format (key) in n:
nc_datasets[key] .append (path.abspath (n)) # path.

S H R W W R R R

HjOin (p/ n))

else:

LOGGER.error ('append file paths to dictionary for key %s_,
—~failed' % key)

nc_datasets [key] .sort ()

except Exception:

LOGGER.exception('failed for %s ' % key)

except Exception:

LOGGER.exception('failed to populate the dictionary with appropriate,,

~files')

for key in nc_datasets.keys () :

try:

nc_datasets[key].sort ()

start, _ = get_timerange (nc_datasets/[key][0]) # get first timestep,,
—of first file

_, end = get_timerange (nc_datasets/[key] [-1]) # get last timestep,,
—of last file

newkey = key + '_' + start + '-' + end

(continues on next page)

82 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

tmp_dic[newkey] = nc_datasets/[key]
except Exception:
msg = 'failed to sort the list of resources and add dates to,,

—keyname: $s' % key

LOGGER.exception (msg)

tmp_dic[key] = nc_datasets[key]

raise Exception (msg)

elif len(resource) == 1:

p, £ = path.split (path.abspath (resource[0]))

tmp_dic[f.replace('.nc', '')] = path.abspath (resource[0])

LOGGER.debug ('only one file! Nothing to sort, resource 1is passed into,
—dictionary')

else:

LOGGER.debug ('sort_by_filename module failed: resource is not 1 or >1")
LOGGER.info ('sort_by_filename module done: %s datasets found' % len(nc_

—datasets))
except Exception:

msg = 'failed to sort files by filename'
LOGGER.exception (msg)
raise Exception (msg)

4.1.2 Climate data tutorials

Here are examples of basic climate data processing for sustainable development.

To make sure all required dependencies are installed run conda env create in the root folder of this repository, than
conda activate climdat.

An running installation of mini-conda or Anacona is required.

4.2 Getting started with PYWPS

* PyWPS 4.0.0 Slides
* PyWPS Documentation

4.2.1 Birdhouse Workshop

Welcome to the “Birdhouse™_ Workshop. This workshop is a hands-on session, which will guide you in creating a pro-
cess for a “Web Processing Service®_. During the workshop you will learn how Birdhouse supports this development
cycle.

Warning: Under Construction ...

4.2. Getting started with PYWPS 83

http://www.slideshare.net/jachym/pywps400
https://pywps.readthedocs.io/en/master/process.html

Birdhouse Documentation, Release 0.7.0

Let’s do it quick

Ready

1. Conda.

Steady

2. Getting Started

Go

Basics:

3. Writing a simple Plot Function

4. Testing the Plot Function

5. Adding a Command-Line Interface
PyWPS:

6. Introduction

7. Installation

8. Processes

9. Clients

84 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

Motivation

Let us see the Birds:

PIXAR

FREIENTS

Requirements

Warning: You need a good internet connection! We are using GitHub, Conda and external data.

Warning: Make sure you have enough disk space available! Especially when you are using a Virtual Machine.
You should have at least 5 GB of free disk space available.

The main requirement of this workshop is Conda. It works on most common platforms like Linux, macOS and
Windows. If you don’t have Conda yet ... we will install it at the beginning of this workshop.

Note: You will need a text-editor to edit Python code. Choose your favorite one ... if you don’t have one yet, you
can try Atom or Kate.

Tip: On Windows you can also use VirtualBox with a Linux Installation, like Linux Mint

4.2. Getting started with PYWPS 85

https://atom.io/
https://kate-editor.org/
https://www.virtualbox.org/
https://www.linuxmint.com/

Birdhouse Documentation, Release 0.7.0

Conda

“Conda’_is an Open Source package and environment manager that can help to manage project dependencies. Conda
works on Linux, macOS and Windows. It was created for Python programs, but it can package and distribute software
for any language. Therefore it allows us to use it for multi-language projects.

Conda allows you to build your own packages and share them via channels on Anaconda Cloud. There is a community
effort to build and maintain packages needed by various projects, called Conda Forge.

You can create conda environments with a specified list of packages, similar to Python virtualenv. These environemnts
can be documented by a environment . yml configuration file and shared with others.

Warning: In this workshop we will install all software packages using “Conda’_.

Installation

Note: You don’t need admin rights to install conda and conda packages.

Download and install the appropriate Miniconda installer from https://conda.io/miniconda.html

With Anaconda you can create environments that use any Python version (e.g. Python 2.7 or Python 3.6), so install
the latest Python 3.x and if you find out later you need a Python 2.7 environment, you can create one.

Linux/macOS

You can copy and paste the following script to install Miniconda with default settings:

if [[$(uname) == "Darwin"]]; then
url=https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

elif [[$(uname) == "Linux"]]; then
url=https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh

fi

curl Surl -o miniconda.sh

bash miniconda.sh -b

export PATH=S$HOME/miniconda3/bin:SPATH

We also recommend to add the following line to your ~/ .bashrc file to make Miniconda the Python found first than
the system Python:

export PATH=S$HOME/miniconda3/bin:SPATH

86 Chapter 4. Tutorials

https://anaconda.org/conda-forge
https://conda-forge.org/
https://conda.io/miniconda.html

Birdhouse Documentation, Release 0.7.0

Windows

Run the installer, choose Just Me (not All Users), and choose a Install Location owned by you.

See also the Conda documentaion

Check your Python version

We are using Python 3.6:

$ which python

~/miniconda3/bin/python

$ python --version

Python 3.6.2 :: Continuum Analytics, Inc.

Links

* https://www.anaconda.com/blog/developer-blog/conda-data-science/

* https://docs.anaconda.com/docs_oss/conda/install/quick

https://docs.anaconda.com/docs_oss/conda/test-drive

https://conda.io/docs/user-guide/cheatsheet.html

* https://www.anaconda.com/blog/developer-blog/what-to-do-when-things- go-wrong-in-anaconda/

Getting Started

Clone the workshop repo from Github:

$ git clone https://github.com/bird-house/birdhouse-workshop.git

Note: In this workshop we assume that your workshop sources are in your home folder ~/birdhouse-workshop.
If the sources are located at a different place then you need to adapt the workshop root folder accordingly.

Create the workshop conda environment:

’$ conda create -n workshop python=3

Activate the conda workshop environment (Linux and macOS):

’$ source activate workshop

Warning: On Windows you use the following command:

’$ activate workshop ‘

4.2. Getting started with PYWPS 87

https://conda.io/docs/user-guide/install/windows.html
https://www.anaconda.com/blog/developer-blog/conda-data-science/
https://docs.anaconda.com/docs_oss/conda/install/quick
https://docs.anaconda.com/docs_oss/conda/test-drive
https://conda.io/docs/user-guide/cheatsheet.html
https://www.anaconda.com/blog/developer-blog/what-to-do-when-things-go-wrong-in-anaconda/

Birdhouse Documentation, Release 0.7.0

I don’t have git ...

Don’t worry ... the quickest way to install git is using conda:

$ conda install git

If things go wrong ...

Well, this can happen ... you can easily get into troubles with resolving conda package dependencies. The easiest
way to solve it is fabula rasa . .. remove the conda environment and install it from new.

Deactivate the current environment (Linux and MacOS):

’$ source deactivate

Warning: On Windows you need to use the following command to deactivate the environment:

’$ deactivate ‘

Remove the workshop conda environment:

’$ conda env remove —-n workshop

Create a new workshop environment with all dependencies used in this workshop by using a conda environment.
yml file in the top level folder:

’$ conda env create —-f environment.yml

Basics

In the following sections we will write a Python function, which generates a plot from a netCDF file.
Writing a simple Plot Function

Prepare

See Getting Started.

Activate the Conda workshop enviroment:

$ source activate workshop

88 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

Aim

We are going to write a simple plot function in Python using matplotlib and cartopy.
Objectives:
* You will learn how to install packages with Conda.

* You will learn the basic usage of the netCDF, matplotlib and cartopy Python libraries.

Run the plotter

Go to the plotter tutorial source:

$ cd ~/birdhouse-workshop/tutorials/01l_plotter

Try the plotter Python module:

$ python plotter.py
Traceback (most recent call last):
File "plotter.py", line 1, in <module>
import matplotlib.pylab as plt
ModuleNotFoundError: No module named 'matplotlib’

Oops, something is missing ... please install the matplotlib package via Conda:

Let's see what is available
$ conda search -c conda-forge matplotlib

... and install it from the conda-forge channel
$ conda install -c conda-forge matplotlib

Conda will show you a list of packages, which are going to be installed. Have a look at this list and answer with y or
just press enter.

The following NEW packages will be INSTALLED:
matplotlib: 2.0.2-py36_2 conda—-forge

Proceed ([y]l/n)?

We should check now the plotter.py source code. Open the plotter.py in your favorite editor, some people
like vim:

’$ vim plotter.py

Besides matplotlib there is another import for netCDF4:

’from netCDF4 import Dataset

Let us install netcdf4:

same procedure as above
$ conda search -c conda-forge netcdf4
$ conda install -c conda-forge netcdf4

So, we should now be ready to run the plotter:

4.2. Getting started with PYWPS 89

Birdhouse Documentation, Release 0.7.0

$ python plotter.py
Plotting ../data/air.mon.ltm.nc
Plot written to plot.png

A plot was generated. Open it in your favorite image viewer. On Ubuntu/LinuxMint you can try Eye of Gnome, on
macOS just say open:

$ eog plot.png # on Ubuntu use Eye of Gnome
or
$ open plot.png # on macOS

The image should look like the following:

Exercise

Open the plotter.py and implement the following features:
* add a colorbar
* add a background map with coastlines
* use a PlateCarree map projection

You will need an additional Python package, cartopy, which you can install with conda. This package is available
on the conda-forge channel. You need to provide an option with the conda channel:

$ conda install -c conda-forge mypackage

Read the code and comments carefully to make this work.

The final result should look like this:

90 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

-30

-40

Links

Matplotlib: http://matplotlib.org/
* Cartopy: http://scitools.org.uk/cartopy/
* Using cartopy with matplotlib

¢ GeoScience Notebook

PyEarthScience: matplotlib examples

Testing the Plot Function
Prepare

See Getting Started.

Activate the Conda workshop enviroment:

$ source activate workshop

Aim

We are going to write a unit test for our Python plot function.
Objectives:

* You will learn how to write a unit test with pytest.

4.2. Getting started with PYWPS 91

http://matplotlib.org/
http://scitools.org.uk/cartopy/
http://scitools.org.uk/cartopy/docs/latest/matplotlib/intro.html
https://github.com/koldunovn/python_for_geosciences/blob/master/07%20-%20Other%20modules%20for%20geoscientists.ipynb
https://github.com/KMFleischer/PyEarthScience/

Birdhouse Documentation, Release 0.7.0

Run pytest

Go to the plotter tutorial source:

’$ cd ~/birdhouse-workshop/tutorials/02_testing_plotter

Run the plotter.py like in the previous tutorial and see if it works:

’$ python plotter.py

Now, we want to implement a unit test for our plot function. We are using pytest as testing framework. Install it via
conda:

’$ conda install -c conda-forge pytest

Run now pytest on our plotting module:

$ pytest plotter.py
E NotImplementedError: This test is not implemented yet. Help wanted!

Oops ... the test is not working yet.

Exercise

Your task is to implement a meaningful test for our simple_plot function.

Start hacking plotter.py in your favorite editor and run pytest frequently.

Warning: Read the comments carefully to make this work and do not trust each line of code.

Links

* pytest: https://docs.pytest.org/en/latest/

Adding a Command-Line Interface
Prepare

See Getting Started.

Activate the Conda workshop enviroment:

$ source activate workshop

92 Chapter 4. Tutorials

https://docs.pytest.org/en/latest/contents.html
https://docs.pytest.org/en/latest/

Birdhouse Documentation, Release 0.7.0

Aim

We are going to write a command line interface (CLI) for our Python plot function.
Objectives:

* You will learn how to write a CLI with the Python library argparse.

Run the plotter CLI

Go to the plotter tutorial source:

$ cd ~/birdhouse-workshop/tutorials/03_plotter_cli

See the command line options of our plotter:

$ python plotter.py -h
usage: plotter.py [-h] [-V [VARIABLE]] dataset

Plot our well-know image:

$ python plotter.py --variable air ../../data/air.mon.ltm.nc

Exercise 1

Play a little bit with the command-line options. Try some other options (-V), use invalid input (water) and skip some
arguments.

Exercise 2

Use external data from a Thredds service, like NOAA:
https://www.esrl.noaa.gov/psd/thredds/catalog/Datasets/ncep.reanalysis.derived/surface/catalog.html

See access methods for a dataset, note OpenDAP:
https://www.esrl.noaa.gov/psd/thredds/catalog/Datasets/ncep.reanalysis.derived/surface/catalog.html?dataset=
Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.nc

Access:

1. OPENDAP: /psd/thredds/dodsC/Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.nc

2. HTTPServer: /psd/thredds/fileServer/Datasets/ncep.reanalysis.derived/surface/air.mon.|ltm.nc
3. WCS: /psd/thredds/wcs/Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.nc

4. WMS: /psd/thredds/wms/Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.nc

Use OpenDAP URLs directly as dataset input:

http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.nc

Data URL:

http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis.derived/surface/air.

4.2. Getting started with PYWPS 93

https://docs.python.org/3/library/argparse.html
https://www.esrl.noaa.gov/psd/thredds/catalog/Datasets/ncep.reanalysis.derived/surface/catalog.html
https://www.esrl.noaa.gov/psd/thredds/catalog/Datasets/ncep.reanalysis.derived/surface/catalog.html?dataset=Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.nc
https://www.esrl.noaa.gov/psd/thredds/catalog/Datasets/ncep.reanalysis.derived/surface/catalog.html?dataset=Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.nc
http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.nc

Birdhouse Documentation, Release 0.7.0

$ python plotter.py —--variable air \
http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/ncep.reanalysis.derived/
—surface/air.mon.ltm.nc

Exercise 3

Extend the command line and with an optional parameter for the t imestep to be plotted.
Open your editor on plotter.py ... and happy hacking.

Don’t forget to test often:

$ pytest plotter.py

Exercise 4

The output name of the plot is always plot . png. Add an optional output parameter to set an output filename.

Links

* Python argparse
¢ NOAA Thredds Data Service

PyWPS
In the following sections we will introduce PyWPS and write a WPS process for a simple plot function.
Introduction

In the following we describe WPS in general and PyWPS.

What is WPS?

Web Processing Service (WPS) is part of the OWS standards defined by OGC, while WES, WMS, WCS, SOS are used
for transfer of data (upload, download, transformation?), WPS is used for data processing on the server (All processing
is done on server side).

WPS provides a standard interface for input, output, process discovery and execution. WPS is normally used for
geospatial data to run spatial processes.

94 Chapter 4. Tutorials

https://docs.python.org/3/howto/argparse.html
https://www.esrl.noaa.gov/psd/thredds/catalog.html
http://pywps.org/

Birdhouse Documentation, Release 0.7.0

Code defining
functionality,
workflows,
processing tasks

Fig. 1: Taken from: http://pointclouds.nci.org.au/talks/f4g_pointwps_adamsteer.pdf

What is PyWPS?

BWPS

PyWPS is a WPS implementation written in the Python language. The current version is 4.0.0.
¢ Server (HTTP-WSGI)
OGC WPS implementation

* Python 3 support
* Based on a webframework (werkzeug)
» Native WSGI itegration (Better server integration)
* MIT license (can be used in comercial projects)
PyWPS has been used in multiple projects concerning geospatial data processing:
* List of scientifical publications

* PyWPS gallery

A brief introdution to WPS

WPS is part of the OGC service suit (OWS) and some operations are common to other services (e.g. GetCapabilities),
but others specific to WPS itself.

WPS requests:
* GetCapabilities
* DescribeProcess
* Execute
GetCapabilities this request provides a list of available services.

DescribeProcess describes a process indicating the inputs and outputs required by the process to execute and/or for
metadata information.

4.2. Getting started with PYWPS 95

http://pointclouds.nci.org.au/talks/f4g_pointwps_adamsteer.pdf
http://pywps.org/
http://pywps.org/science/
http://pywps.org/gallery/

Birdhouse Documentation, Release 0.7.0

Execute this request will accept inputs/outputs, processing conditions (async/sync) and will run the process on the
server.

WPS async/sync

Some processes are time consuming, so it is better to start the process and later query the server for its status or output.
This is refered as a async execute request

If you are confident that the process being executed is fast you can request a sync execution where the client waits for
the immeditely reply from server withoutput (no need to pull the output later).

WPS input/output

WPS has 3 sorts of data I/O:
¢ Literal
¢ ComplexData
¢ BoundingBox

The Literal is any number (float, int) and string. ComplexData is geospatial data in multiple formats (mimetype, e.g:
application/gml+xml) that can be integrated into the WPS request/response, when using vectorial data this one
is transformed into XML and raster binary data coded into base64 (binary coding using ascii symbols).

WPS versions

WPS 1.0.0 was released in 2007, the new WPS 2.0.0 was released in 2015. So far major implementations have only
used WPS 1.0.0.

WPS 1.0.0 can start processes, but there is no way to stop them before the process reaches its conclusion. .. it is like
a car without brakes. But not all is bad. New WPS 2.0.0 allows for processes to be cancelled.

Links

* PyWPS
* PyWPS Workshop

Installation
Requirements

See Getting Started.

Activate the conda workshop enviroment:

$ source activate workshop

96 Chapter 4. Tutorials

http://pywps.org/
https://github.com/PyWPS/pywps-workshop

Birdhouse Documentation, Release 0.7.0

Aim

We are going to install PyWPS and run some example processes.
Objectives:

* You will learn how to install PyWPS, start a WPS service and execute a process.

Install PyWPS

You can install PyWPS via conda. Make sure you install PyWPS from the birdhouse conda channel. We also need the
conda-forge channel, and the channels must be provided in the displayed order (channel priority):

’$ conda install -c birdhouse -c conda-forge pywps gdal

Let’s see if this has worked:

’$ python -c "import pywps"

This bash command will load the pywps library and close the console. If the install was properly done no error
messages will appear.

Start the demo WPS service

This workshop includes a demo service with some example processes. Let’s try them.

Start the service by running the following command:

change to workshop root folder
cd ~/birdhouse-workshop/

start demo service

python demo/demo.py

Uy S U S

If everything went well you should have a console output as follows:

Configuration file(s) ['demo/default.cfg'] loaded
starting WPS service on http://localhost:5000/wps
*+ Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Warning: If you need to start the service on a different port then 5000, you must edit the port in the PyWPS
configuration demo/default.cfg:

[server]
url = http://localhost:5001/wps
outputurl = http://localhost:5001/outputs

4.2. Getting started with PYWPS 97

http://pywps.org/

Birdhouse Documentation, Release 0.7.0

Service check

To test the service, open your internet browser to this address: http://127.0.0.1:5000/wps.

Alternatively, you can also try curl:

$ curl "http://127.0.0.1:5000/wps"

You will get an XML exception report by the PyWPS service:

<?xml version="1.0" encoding="UTF-8"?>
<!-— PywPS 4.0.0 ——>
<ows:ExceptionReport xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xsi="http://www.
—w3.0rg/2001/XMLSchema-instance" xsi:schemalLocation="http://www.opengis.net/ows/1.1,
—http://schemas.opengis.net/ows/1.1.0/owsExceptionReport.xsd" version="1.0.0">

<ows:Exception exceptionCode="MissingParameterValue" locator="service" >

<ows :ExceptionText>service</ows:ExceptionText>

</ows:Exception>

</ows :ExceptionReport>

The good thing . .. the service is running and talking to you :)

Test PyWPS

Test the WPS service itself using a GetCapabilities request; insert this address in your browser:

http://127.0.0.1:5000/wps?service=WPS &request=GetCapabilities

$ curl "http://127.0.0.1:5000/wps?service=WPS&request=GetCapabilities"

In the GetCapabilities XML document notice the following:
* Abstract describing service
* Service provider

* Process Offerings (Title, Abstract, Metadata)

Say hello

We can run now our first process. The GetCapabilities XML document tells us that this WPS serivce has a process
with identifier say_hello. Please find this description in the document. It should look like this:

<wps:Process wps:processVersion="1.3.2">
<ows:Identifier>say_hello</ows:Identifier>
<ows:Title>Process Say Hello</ows:Title>
</wps:Process>

Now, we need some more details about this process. Therefore we do a DescribeProcess request; insert this address
in your browser:

http://127.0.0.1:5000/wps?service=sWPS &request=DescribeProcess&version=1.0.0&identifier=say_hello

$ curl "http://127.0.0.1:5000/wps?service=WPS&request=DescribeProcess&version=1.0.0&
—identifier=say_hello"

98 Chapter 4. Tutorials

http://127.0.0.1:5000/wps
http://127.0.0.1:5000/wps?service=WPS&request=GetCapabilities
http://127.0.0.1:5000/wps?service=WPS&request=DescribeProcess&version=1.0.0&identifier=say_hello

Birdhouse Documentation, Release 0.7.0

The resulting XML document tells us something about the input and output parameters, for example there is an input
parameter name:

<Input minOccurs="1" maxOccurs="1">
<ows:Identifier>name</ows:Identifier>
<ows:Title>Input name</ows:Title>
<LiteralData>
<ows:DataType ows:reference="urn:ogc:def:dataType:0GC:1.1:string">string</ows:
—DataType>
<ows :AnyValue/>
</LiteralData>
</Input>

Let us now execute the say_hello process with an input parameter name Birdy:

http://127.0.0.1:5000/wps?service=WPS &request=Execute&version=1.0.0&identifier=say_hello&Datalnputs=
name=Birdy

$ curl "http://127.0.0.1:5000/wps?service=WPS&request=Executes&version=1.0.0&
—identifier=say_hello&DatalInputs=name=Birdy"

If all went well, you get an output parameter with the value Hello Birdy:

<wps :ProcessOutputs>
<wps :Output>
<ows:Identifier>response</ows:Identifier>
<ows:Title>Output response</ows:Title>
<wps:Data>
<wps:LiteralData dataType="urn:ogc:def:dataType:0GC:1l.1l:string" uom="urn:ogc:
—def:uom:0GC:1.0:unity">Hello Birdy</wps:LiteralData>
</wps:Data>
</wps:Output>
</wps:ProcessOutputs>

Exercise 1

Try the say_hello again with some other input values.

Exercise 2

Before you fall into sleep ... let’s do another exercise. Our service has another process. Which one is it?

Please find it and run an execute request ... you need to know the input parameters.

Links

* PyWPS Workshop
* PyWPS Flask Demo

* Geoprocessing Info

4.2. Getting started with PYWPS 99

http://127.0.0.1:5000/wps?service=WPS&request=Execute&version=1.0.0&identifier=say_hello&DataInputs=name=Birdy
http://127.0.0.1:5000/wps?service=WPS&request=Execute&version=1.0.0&identifier=say_hello&DataInputs=name=Birdy
https://github.com/PyWPS/pywps-workshop/blob/master/01-Installation.md
http://pywps-demo.readthedocs.io/en/latest/
http://geoprocessing.info/wpsdoc/1x0GetCapabilities

Birdhouse Documentation, Release 0.7.0

Processes
Requirements

See Getting Started.

Activate the conda workshop enviroment:

$ source activate workshop

Aim

We are going to write a PyWPS process.
Objectives:

* You will learn how to write a PyWPS process.

What is a WPS Process?

In PyWPS a process is a Python class that has the following structure:
* The parent Process class.
* Four input/ouput classes: ComplexInput, LiteralInput, ComplexOutput and LiteralOutput
e The _handler (request, response) method
e The request . inputs and the response.output properties.

Go through the PyWPS documentation on Processes.

Create your first process

Let’s create a new process that generates a nice and simple plot from a NetCDF file. We have writtena simple_plot
function, which we can use here. We need to do the following:

1. write the PyWPS process definition,
2. call our simple_plot method,

3. activate our process in PyWPS.

Check the plotter function

Change into the tutorial processes folder:

$ cd ~/birdhouse-workshop/tutorials/10_pywps_process/processes

You can find here the plotter.py module from our previous exercise:

$ 1s
plotter.py

Let’s see if it still works:

100 Chapter 4. Tutorials

http://pywps.readthedocs.io/en/latest/process.html

Birdhouse Documentation, Release 0.7.0

$ python plotter.py -h

Generate a plot:

$ python plotter.py ../../../data/air.mon.ltm.nc -V air
dataset=['../../../data/air.mon.ltm.nc'], variable=air

Plotting ../../../data/air.mon.ltm.nc

Using map projection <cartopy.crs.PlateCarree object at 0x7fael09538e0>
Plot written to plot.png

Output: plot.png

Write the process definition

In the processes/ folder there is another file:

$ 1s
wps_simple_plot.py

This file contains the process definition. Notice the input and output parameters.

Start the service

Change into the tutorials folder:

’$ cd ~/birdhouse-workshop/tutorials/10_pywps_process

Start the WPS service:

’$ python ../../demo/demo.py

Check if the service is running:

http://127.0.0.1:5000/wps?service=WPS &request=GetCapabilities

’$ curl "http://127.0.0.1:5000/wps?service=WPS&request=GetCapabilities"

Notice that the simple_plot service is not activated. Well, time to exercise ...

Exercise 1

Activate the SimplePlot process from the wps_simple_plot module. See if it shows up in the GetCapabilites
request.

Tip: You need to edit processes/__init__ .py and restart the demo service.

4.2. Getting started with PYWPS 101

http://127.0.0.1:5000/wps?service=WPS&request=GetCapabilities

Birdhouse Documentation, Release 0.7.0

Exercise 2

When the SimplePlot process is activated then run a DescribeProcess request.

Tip: Find the process identifier of SimplePlot inthe GetCapabilities document and adapt the DescribePro-
cess URL from our previous exercise.

Exercise 3

Run an Execute request with a remote netCDF file from a Thredds data server.

Use the following request URL.

http://127.0.0.1:5000/wps?
Service=WPS&
Request=Executes&
Version=1.0.0&
Identifier=PLOT_IDENTIFIER&
Datalnputs=variable=air;dataset=0@xlink:href=NC_URL

Or as a one-liner:

http://127.0.0.1:5000/wps?Service=WPS &Request=Execute& Version=1.0.0&Identifier=PLOT_IDENTIFIER &
Datalnputs=variable=air;dataset=@xlink:href=NC_URL

You need to replace PLOT_IDENTIFIER with the correct processes identifier. Replace NC_URL with a remote
netCDF data file (HTTP, not OpenDAP), for example:

https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.
nc

Notice that the output will be returned as reference, for example:

<wps :ProcessOutputs>
<wps :Output>
<ows:Identifier>output</ows:Identifier>
<ows:Title>Simple Plot</ows:Title>
<wps:Reference xlink:href="http://localhost:5000/outputs/4d075e%9a-acf4-11e7-9396—
—~acde48001122/plot_ex33_nbf.png" mimeType="image/png"/>
</wps:Output>
</wps :ProcessOutputs>

Exercise 4

You can also run the process in asynchronous mode by adding the parameters storeExecuteResponse=true
and status=true.

http://127.0.0.1:5000/wps?
Service=WPS&
Regquest=Executeé&
Version=1.0.0&
Tdentifier=PLOT_IDENTIFIER&
Datalnputs=variable=air;dataset=0@xlink:href=NC_URL&

(continues on next page)

102 Chapter 4. Tutorials

https://www.esrl.noaa.gov/psd/thredds/catalog/Datasets/ncep.reanalysis.derived/surface/catalog.html?dataset=Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.nc
http://127.0.0.1:5000/wps?Service=WPS&Request=Execute&Version=1.0.0&Identifier=PLOT_IDENTIFIER&DataInputs=variable=air;dataset=@xlink:href=NC_URL
http://127.0.0.1:5000/wps?Service=WPS&Request=Execute&Version=1.0.0&Identifier=PLOT_IDENTIFIER&DataInputs=variable=air;dataset=@xlink:href=NC_URL
https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.nc
https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.nc
http://pywps.readthedocs.io/en/latest/process.html#progress-and-status-report

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

storeExecuteResponse=trueé&
status=true

Warning: Asynchronous requests do not work on Windows.

In this case you will a response, which tells you that the process has been accepted, and you need to poll the status
document given by the statusLocation URL:

<wps :ExecuteResponse
service="WPS" version="1.0.0" xml:lang="en-US"
serviceInstance="http://localhost:5000/wps?service=WPS& request=GetCapabilities"
statusLocation="http://localhost:5000/outputs/c894clbd-acf7-11e7-b989-acded8001122.
—xml">
<wps:Process wps:processVersion="1.0">
<ows:Identifier>simple_plot</ows:Identifier>
<ows:Title>Simple Plot</ows:Title>
<ows :Abstract>Returns a nice and simple plot.</ows:Abstract>
</wps:Process>
<wps:Status creationTime="2017-10-09T15:43:10Z">
<wps :ProcessAccepted>PyWPS Process simple_plot accepted</wps:ProcessAccepted>
</wps:Status>
</wps :ExecuteResponse>

Exercise 5

You can also return the output directly. For this modify the above request and add the RawDataOutput parameter:

http://127.0.0.1:5000/wps?
Service=WPS&
Request=Executes&
Version=1.0.0&
Tdentifier=PLOT_IDENTIFIER&
Datalnputs=variable=air;dataset=0@xlink:href=NC_URL&
RawbhataOutput=output

Warning: Due to a bug in PyWPS it works currently only with Python 2.7.

Links

* PyWPS workshop

* Geoprocessing Info

* NOAA Thredds Catalog

* Notebook with WPS requests

4.2. Getting started with PYWPS 103

https://github.com/PyWPS/pywps-workshop/blob/master/02-Process.md
http://geoprocessing.info/wpsdoc/1x0ExecuteGET
https://www.esrl.noaa.gov/psd/thredds/catalog.html
https://github.com/bird-house/birdhouse-workshop/blob/master/tutorials/10_pywps_process/notebooks/wps-requests.ipynb

Birdhouse Documentation, Release 0.7.0

Testing
Requirements

See Getting Started.

Activate the conda workshop enviroment:

$ source activate workshop

Aim

As you develop more complex process and use more structured datasets, using simply a web browser to test becomes
impractical. In this chapter you get acquainted with alternative tools to interact with a PyWPS instance.

Objectives:

* You will learn how to test a PyWPS process.

wget

Start by trying the GetCapabilities request:

$ wget —-q -0 caps.xml \
"http://127.0.0.1:5000/wps?service=WPS&request=GetCapabilities"

Important question: Why —g, —O and " in the comnand:
—q quit verbose information about requests.
—0O Output to file. You can use —, and the content will be dumped into the prompt.

" Otherwise wget would not consider & as part of the URL and would cut it.

curl

Similar to wget you can also use curl to retrieve the GetCapabilities XML document:

$ curl -s -o caps.xml \
"http://127.0.0.1:5000/wps?service=WPS&request=GetCapabilities"

—s silent mode ... no progress bar.

—o Output to file. You can use —, and the content will be dumped into the prompt.

104

Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

RESTClient (Firefox only)

You can use the RestClient Firefox plugin to run requests.

Here is an example with a GetCapabilities request using HTTP method GET:

File Authentication Headers View Favorite Requests
Method GET v URL | vice=WPS&request=GetCapabilities * m
Body
Response Headers Response Body (Raw) Response Body (Highlight) Response Body (Preview)
Status Code 200 0K
Content-Length 4113
Content-Type text/xml
Date Mon, @9 Oct 2017 14:40:19 GMT
Server Werkzeug/0.12.2 Python/3.6.2

XML HTTP Post Request

Setting

RESTClient

As requests and data become more structure and lengthy, concatenating all parameters into a URL for a GET type
request becomes difficult or impossible. For this reason the WPS standard allows the definition of requests as XML

documents sent to the server using the POST method of the HTTP protocol.

Here is an example with an Execute request using HTTP method POST:

4.2. Getting started with PYWPS

105

http://restclient.net/

Birdhouse Documentation, Release 0.7.0

File Authentication Headers View Favorite Requests Setting RESTClient
[-]1 Request

Method POST v URL | http://localhost:5000/wps x v m

Body

<wps:Execute service="WPS" version="1.0.0" xmIns:wps="http://www.opengis.net/wps/1.0.0" xmins:ows="http://www.opengis.net/ows/1.1"
xmins:xlink="http://www.w3.org/1999/xlink" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="http://www.opengis.net
/wps/1.0.0
../wpsExecute_request.xsd">
<ows:|dentifier>simple_plot</ows:ldentifier>
<wps:Datalnputs>
<wps:Input>
<ows:|dentifier>dataset</ows:Identifier>
<ows:Title>Dataset</ows:Title>
<wps:Reference xlink:href="https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.derived/surface/air.mon.ltm.nc"/>
</wps:Input>

[-] Response

Response Headers Response Body (Raw) Response Body (Highlight) Response Body (Preview)

<!—— PyWPS 4.0.0 —>
<wps:ExecuteResponse xmlns:gml="http://www.opengis.net/gml" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wps="http://ww
w.opengis.net/wps/1.0.0" xmlns:xlink="http://www.w3.0rg/1999/x1link" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" x
si:schemalLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsExecute_response.xsd" service="
WPS" version="1.0.0" xml:lang="en-US" serviceInstance="http://localhost:5000/wps?service=WPS&request=GetCapabilities" s
tatusLocation="http://localhost:5000/outputs/c6f62448-ad@3-11e7-b082-acde48001122.xm1">
<wps:Process wps:processVersion="1.0">
<ows:Identifier>simple_plot</ows:Identifier>
<ows:Title>Simple Plot</ows:Title>
<ows:Abstract>Returns a nice and simple plot.</ows:Abstract>
</wps:Process>
<wps:Status creationTime="2017-10-09T17:09:02Z">
<wps:ProcessSucceeded>PyWPS Process Simple Plot finished</wps:ProcessSucceeded>

It is using the XML description of the Execute request.

It is also possible to use curl (or wget) for POST requests:

$ curl -H "Content-Type: text/xml" -X POST \
-d@execute_req.xml http://localhost:5000/wps

—d@ pass data from the given filename (XML payload)
—X HTTP method, GET or POST

—H Header variable, in our case we set the Content-Type.

Exceptions

ExceptionReport is an important feature of WPS. In WPS 1.0.0 we have the following exceptions:
MissingParameterValue The request does not include a parameter value or a default cannot be found.
InvalidParameterValue The request contains an invalid parameter value.

NoApplicableCode Generic exception, no other code could be applied.

NotEnoughStorage The server does not have enough space available.

Try the following request:

106 Chapter 4. Tutorials

https://github.com/bird-house/birdhouse-workshop/blob/master/tutorials/11_pywps_testing/execute_req.xml

Birdhouse Documentation, Release 0.7.0

http://127.0.0.1:5000/wps?service=WPS &request=DescribeProcess

$ curl "http://127.0.0.1:5000/wps?service=WPS&request=DescribeProcess"

The exception is MissingParameterValue:

<?xml version="1.0" encoding="UTF-8"?>
<ows :ExceptionReport xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xsi="http://www.
—w3.0rg/2001/XMLSchema-instance" xsi:schemalLocation="http://www.opengis.net/ows/1.1_
—http://schemas.opengis.net/ows/1.1.0/owsExceptionReport.xsd" version="1.0.0">
<ows:Exception exceptionCode="MissingParameterValue" locator="version" >

<ows :ExceptionText>Missing version</ows:ExceptionText>
</ows :Exception>
</ows :ExceptionReport>

The version parameter is missing.

In case of Python errors in the called process, PyWPS will dump the Python stack into the ExceptionReport.

Exercise 1

Try wget or curl with some of the previous DescribeProcess and Execute requests.

Exercise 2

Run the POST request using the prepared XML payload.

Change into the tutorial processes folder:

’$ cd ~/birdhouse-workshop/tutorials/11_pywps_testing

Make sure no WPS service is running ... stop it with CTRL—c.

Start the demo service:

’$ python ../../demo/demo.py

Use the above curl command with the payload execute_reqg.xml, which you can find in this folder. Modify the
input parameters of the payload.

Note: There is another POST request example in the point-clouds talk by NCI.

Links

¢ RestClient
¢ Poster on Chrome
* PyWPS workshop

* Geoprocessing Info

WPS Tutorial

4.2. Getting started with PYWPS 107

http://127.0.0.1:5000/wps?service=WPS&request=DescribeProcess
http://pointclouds.nci.org.au/talks/f4g_pointwps_adamsteer.pdf
http://restclient.net/
https://chrome.google.com/webstore/detail/chrome-poster/cdjfedloinmbppobahmonnjigpmlajcd
https://github.com/PyWPS/pywps-workshop/blob/master/03-Testing.md
http://geoprocessing.info/wpsdoc/1x0ExecutePOST
http://wiki.ieee-earth.org/Documents/GEOSS_Tutorials/GEOSS_Provider_Tutorials/Web_Processing_Service_Tutorial_for_GEOSS_Providers/Section_2%3a_Introduction_to_WPS

Birdhouse Documentation, Release 0.7.0

Logging
Requirements

See Getting Started.

Activate the conda workshop enviroment:

$ source activate workshop

Aim

Take a look at the Logging section in the configuration file. PyWPS currently logs events to two different locations:
* A log file where messages are stored. The kind of messages is set in the configuration file.
* A database where each request to the service is registered.

PyWPS uses SQLAIchemy to connect and work with multiple database management systems. SQLite and PostgreSQL
tend to be the most used options.

Objectives:

* You will learn how to configure and check the logs.

Check the logs

Our demo WPS service is configured to log to the pywps . 1og file. Using the tail, less or cat commands search
for error messages in the pywps . 1og file.

Tip: These messages are preceded by the string “[ERROR]”, it is possible to grep the error messages:

cat pywps.log | grep "\[ERROR\]"

Continuous monitoring

Use the tail command to continuously monitor the activity of the service:

$ tail -f pywps.log

Database browser

If you have no database browsing programme installed, Install DB Browser for SQLite on your system. On Debian
based systems it can be installed from the command line:

$ sudo apt install sqglitebrowser

See a screenshot with an open SQLite database file pywps—-logs.sglite3:

108 Chapter 4. Tutorials

http://pywps.readthedocs.io/en/latest/configuration.html#logging
http://www.sqlalchemy.org/
http://sqlitebrowser.org/

Birdhouse Documentation, Release 0.7.0

o [] . DB Browser for SQLite - /Users/pingu/sandbox/birdhouse/birdhouse-workshop/pywps-logs.sqlite3
* | New Database % Open Database i [Write Changes 2 Revert Changes
Database Structure [P LCH Edit Pragmas Execute SQL
Table: || pywps_requests 2% New Record Delete Record
uuid pid operation version time_start time_end identifier message percent_done status
Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter
1 f820ac82-adle... 61065 getcapabilities 1.0.0 2017-10-04 18... 2017-10-04 18... 100.0 3
2 167df5c5-a91f... 61065 getcapabilities 1.0.0 2017-10-04 18... 2017-10-04 18... 100.0 3
3 473c3a87-a91f... 61065 describeprocess | 1.0.0 2017-10-04 18... 2017-10-04 18... identifier 100.0 0
4 6802d451-a91... 61065 execute 1.0.0 2017-10-04 18... 2017-10-04 18... Identifier 100.0 [
[W][] 1-a0ta [»|[m Goto: 1
UTF-8

You can also use SQLite on the command-line:

$ sqglite3 pywps-logs.sglite3
sglite> select » from pywps_requests;
sglite> .quit

Configure logging

Change into the tutorials folder pywps_logging:

$ cd ~/birdhouse-workshop/tutorials/12_pywps_logging

It contains a pywps . cfg file with a logging section. You can overwrite the default PyWPS configration by starting
the PyWPS service with another config:

$ python ../../demo/demo.py -c pywps.cfg
loading configuration

Configuration file(s) ['../../demo/default.cfg',

'pywps.cfg'] loaded

4.2. Getting started with PYWPS 109

Birdhouse Documentation, Release 0.7.0

Exercise 1

Edit the pywps.cfg... use DEBUG logging level. Start the demo WPS service and monitor the log file.

Run a few processes.

Exercse 2

Start the demo WPS service with processes form the previous tutorial. Add some 1ogging statements and monitor
the service.

Links

* PyWPS workshop

Clients
Requirements

See Getting Started.

Activate the conda workshop enviroment:

$ source activate workshop

Aim

We are going to use a WPS client.
Objectives:
* You will learn how to use the Birdy WPS clients.

* You can try an online demo with the Phoenix Web UL

Birdy

Birdy is a command-line client for Web Processing Services. It is using the Python library OWSLib to interact with
WPS services.

Install it via conda:

$ conda install -c birdhouse -c conda-forge birdhouse-birdy owslib

Start the demo WPS service:

go to the workshop root folder
$ cd ~/birdhouse-workshop/

start wps service

$ python demo/demo.py

110 Chapter 4. Tutorials

https://github.com/PyWPS/pywps-workshop/blob/master/04-Logging.md
http://birdy.readthedocs.io/en/latest/

Birdhouse Documentation, Release 0.7.0

Warning: The WPS service is running in foreground. You need to open a new terminal and activate the conda
workshop environment for the birdy WPS client.

Tip: You can also start the WPS service in background:
$ python demo/demo.py -d
Remember the process id to kill the service:

forked process id: 16483

Let birdy know the WPS service URL:

’$ export WPS_SERVICE=http://localhost:5000/wps

Note: On Windows you can use:

’$ set WPS_SERVICE=http://localhost:5000/wps

See which processes are available:

$ birdy -h
usage: birdy [<options>] <command> [<args>]

Show the description of say_hello:

$ birdy say_hello -h
usage: birdy say_hello [-h] --name [NAME]
[-—output [{response} [{response} ...]]]

Run say_hello:

$ birdy say_hello --name Birdy

[ProcessAccepted 0/100] PyWPS Process say_hello accepted
[ProcessSucceeded 0/100] PyWPS Process Process Say Hello finished
Output:

response=Hello Birdy

Warning: On Windows the asynchronous call does not work, which birdy uses by default. Use the ——sync
option instead:

$ birdy —--sync say_hello --name Birdy

4.2. Getting started with PYWPS 111

Birdhouse Documentation, Release 0.7.0

Phoenix

Phoenix is Pyramid web-application to interact with WPS services.

Phoenix

A Python Pyramid Web Application
to interact with Web Processing Services

Highlighted Processes

Run one of these favorite processes or explore more.

¢ o o & O o

sleep ncdump hello wordcounter cchecker spotchecker

Explore Phoenix

Making it easy to run processes from a Web Processing Service and to visualize and share the results.

You can try the online demo.

Exercise 1

Play with birdy ... run the sleep process.

Exercise 2

Start the demo service with the processes from 7esting and call the simple_plot process with birdy.

Exercise 3

Try some of the processes on the Phoenix demo. For example the wordcounter and the spotchecker.

112 Chapter 4. Tutorials

http://pyramid-phoenix.readthedocs.io/en/latest/
https://trypyramid.com/
https://mouflon.dkrz.de/
https://mouflon.dkrz.de/

Birdhouse Documentation, Release 0.7.0

Links

* Birdy

* Phoenix
e Pyramid
OWSLib

The Birds

In the following sections we will introduce the Birds.

Introduction

“Birdhouse"_is a collection of “Web Processing Service'_ (WPS) related Python components to support climate data
analysis. Birdhouse uses OGC/WPS software from the GeoPython project, like PyWPS and OWSLib.

The aim of Birdhouse is to support (climate science) projects to setup a Web Processing Service infrastructure.

Birdhouse is the Home of several Birds, the components of the Birdhouse ecosystem. There are birds for the Web
Processing client side, to make the WPS service access more convenient and also as an example for project own Web
Uls. There are fully configured WPS services with example processes, which run out-of-the-box and can be forked
and used as template. There is also a middleware component to control access to WPS services.

The Birdhouse documentation gives an overview of the architecture.

The Birdhouse components can be installed with a simple make install. See the installation documentation for
details.

All Birdhouse components are Open Source and released under the Apache License. The source code is available on
GitHub.

See the documentation of the Birdhouse components and try the demo.

Live Demo

Phoenix

Showing Phoenix with CDO, Spotchecker and Subsetting process with ESGF, OpenDAP and uploaded data.

Birdy

Showing Birdy with ncdump on ESGF data (using access token).

4.2. Getting started with PYWPS 113

http://birdy.readthedocs.io/en/latest/
http://pyramid-phoenix.readthedocs.io/en/latest/
https://trypyramid.com/
https://geopython.github.io/OWSLib/
https://geopython.github.io/
http://twitcher.readthedocs.io/en/latest/
http://birdhouse.readthedocs.io/en/latest/overview.html
http://birdhouse.readthedocs.io/en/latest/installation.html
http://birdhouse.readthedocs.io/en/latest/license.html
https://github.com/bird-house
http://birdhouse.readthedocs.io/en/latest/projects.html
https://mouflon.dkrz.de/

Birdhouse Documentation, Release 0.7.0

curl

Using curl to run the wordcounter on an external service.

Advanced

In the following sections we will go into advanced topics.

OWSLib

OWSLIb is a Python library for client programming with Open Geospatial Consortium (OGC) web service (hence
OWS), like WMS, CSW and WPS.

We are using an Jupyter notebook to look at some example code.

Todo: Add ssh tunnel or jupyter console example.

We need to install Jupyter via conda:

’$ conda install -c conda-forge jupyter

Go to the tutorials folder pywps_clients:

’$ cd ~/birdhouse-workshop/tutorials/31_owslib

You will find there an Jupyter notebook:

$ 1s
owslib-wps.ipynb

Open the Jupyter notebook:

$ jupyter notebook

And point your browser to the following URL:
http://localhost:8888/notebooks/owslib-wps.ipynb

Or see it on GitHub.

Links

* https://try.jupyter.org/

* https://nbviewer.jupyter.org/

114 Chapter 4. Tutorials

https://geopython.github.io/OWSLib/
https://jupyter.org/
http://localhost:8888/notebooks/owslib-wps.ipynb
https://github.com/bird-house/birdhouse-workshop/blob/master/tutorials/31_owslib/owslib-wps.ipynb
https://try.jupyter.org/
https://nbviewer.jupyter.org/

Birdhouse Documentation, Release 0.7.0

ESGF
Using ESGF pyclient to access ESGF data

Example Notebook: https://github.com/cehbrecht/demo-notebooks

Use birdy command-line with ESGF data

Example: http://birdy.readthedocs.io/en/latest/tutorial.html

Use Phoenix Wizard with ESGF data

Example: http://pyramid-phoenix.readthedocs.io/en/latest/tutorial/visualisation.html

Docker

The Birdhouse WPS services are available as a Docker image on Docker Hub.

What is Docker?

https://www.docker.com/what-docker

Run Emu as Docker container

Example: http://emu.readthedocs.io/en/latest/tutorial/using_docker.html

Links

* Docker Training: http://slides.com/dataduke/docker-001#/

Travis CI

Todo: add travis example

Continuous Integration with Travis ... triggered by commit on GitHub and via cron job.

See Emu example:

https://travis-ci.org/bird-house/emu

Travis config:

https://github.com/bird-house/emu/blob/master/.travis.yml

WPS tests:
https://github.com/bird-house/emu/blob/master/emu/tests/test_wps_hello.py

4.2. Getting started with PYWPS

115

https://github.com/cehbrecht/demo-notebooks
http://birdy.readthedocs.io/en/latest/tutorial.html
http://pyramid-phoenix.readthedocs.io/en/latest/tutorial/visualisation.html
https://hub.docker.com/r/birdhouse/
https://www.docker.com/what-docker
http://emu.readthedocs.io/en/latest/tutorial/using_docker.html
http://slides.com/dataduke/docker-001#/
https://travis-ci.org/bird-house/emu
https://github.com/bird-house/emu/blob/master/.travis.yml
https://github.com/bird-house/emu/blob/master/emu/tests/test_wps_hello.py

Birdhouse Documentation, Release 0.7.0

Appendix

Why using WPS?

* Web based services could help researchers collaborate

— The fact that individual researchers are increasingly specialized raises the “cost” of interacting with other
disciplines.

— Due to these costs, multidisciplinary projects are often run in parallel, with no real dependencies and
synergies between teams.

— Open source code has helped tremendously, but there is a large resource gap between installing software
and having a working application, especially in earth system modeling.

* Why would individual scientists publish services?
— Increased visibility and funding opportunities.
— Improved research quality.
— Participate to intercomparison projects.
* Access to external resources
— operations would be calculated on the server, while the system resources could be exposed to clients.
— large climate data stores
— compute resources
— complex software systems
* Cross institutional, cross-community
— depends only on an open standard interface.
— several implementations for a Processing Service can be used.

— clients (web portals) can rely on a stable processing service interface.

Who is using WPS?
Copernicus, EU Project

 Copernicus Climate Change Service: http://climate.copernicus.eu/

* WPS Demo: https://github.com/cp4cds/copernicus-wps-demo

CEDA/STFC, UK

* CEDA: http://www.ceda.ac.uk/
» STFC: http://www.stfc.ac.uk/
* COWS WPS: http://wps-webl.ceda.ac.uk/ui/home

116 Chapter 4. Tutorials

http://climate.copernicus.eu/
https://github.com/cp4cds/copernicus-wps-demo
http://www.ceda.ac.uk/
http://www.stfc.ac.uk/
http://wps-web1.ceda.ac.uk/ui/home

Birdhouse Documentation, Release 0.7.0

IPSL/LSCE, France

IPSL: https://www.ipsl.fr/en/
LSCE: http://www.lsce.ipsl.fr/
Talk at Euro Cordex 2016

* Paper about Flyingpigeon (in Review)

KNMI, Netherlands

o KNMI: http://www.knmi.nl/

¢ Climate4Impact Portal: https://climate4impact.eu/

ESGF: lead by LLNL, US

e LLNL: https://www.lInl.gov/
* ESGF Project: https://esgf.lInl.gov/
* Compute WPS https://github.com/ESGF/esgf-compute-wps

CRIM/Ouranos, Canada

* CRIM: http://www.crim.ca/en/
* Ouranos: https://www.ouranos.ca/en/

 Talk at AGU 2016

NCI, Australia

* NCI: http://nci.org.au/
e Talk about WPS for Pointclouds

DKRZ, Germany

* DKRZ: https://www.dkrz.de/dkrz-en
* Birdhouse: http://bird-house.github.io/
* Talk at ESGF F2F, 2016

4.2. Getting started with PYWPS 117

https://www.ipsl.fr/en/
http://www.lsce.ipsl.fr/
http://www.icrc-cordex2016.org/images/pdf/Programme/presentations/parallel_A3/A3_4_Hempelmann.pdf
https://hal.archives-ouvertes.fr/hal-01375615
http://www.knmi.nl/
https://climate4impact.eu/
https://www.llnl.gov/
https://esgf.llnl.gov/
https://github.com/ESGF/esgf-compute-wps
http://www.crim.ca/en/
https://www.ouranos.ca/en/
http://www.crim.ca/media/publication/fulltext/agu2016_presentation_short_ouranos.pdf
http://nci.org.au/
http://pointclouds.nci.org.au/talks/f4g_pointwps_adamsteer.pdf
https://www.dkrz.de/dkrz-en
http://bird-house.github.io/
https://esgf.llnl.gov/media/2016-F2F/8-12-2016/F2F-2016-Birdhouse.pdf

Birdhouse Documentation, Release 0.7.0

KIT, Germany

 KIT: http://www.kit.edu/english/
* Talk at EGU 2017

APEC Climate Center, South Korea

e APCC: http://www.apcc21.org/
e Talk at FOSS4G, Bonn, 2016

Links

Birdhouse:
* http://bird-house.github.io/
* Birdhouse Workshop: http://birdhouse-workshop.readthedocs.io/en/latest/
* Birdhouse talks: http://birdhouse.readthedocs.io/en/latest/index.html#presentations-blog-posts
WPS:
* http://geoprocessing.info/index.html
* PyWPS: http://pywps.org/
* PyWPS Workshop: https://github.com/PyWPS/pywps-workshop
Conda:
* https://conda.io/docs/
e https://www.anaconda.com/blog/developer-blog/conda-data-science/
Python:
* pytest: https://docs.pytest.org/en/latest/
 Python argparse: https://docs.python.org/3/howto/argparse.html
Jupyter Notebooks:
* Notebook Gallery: https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
* IOOS Demos: https://ioos.github.io/notebooks_demos/
Cartopy/Matplotlib:
* Matplotlib: http://matplotlib.org/
 Cartopy: http://scitools.org.uk/cartopy/
* Using cartopy with matplotlib
* GeoScience Notebook
» PyEarthScience matplotlib examples: https://github.com/KMFleischer/PyEarthScience/
netCDF:

* http://nbviewer.jupyter.org/github/julienchastang/unidata-python-workshop/blob/master/reading_netCDF.
ipynb

118 Chapter 4. Tutorials

http://www.kit.edu/english/
https://presentations.copernicus.org/EGU2017-8627_presentation.pdf
http://www.apcc21.org/
http://pywps.org/science/pub/Seongkyu_Lee-FOSS4G_BONN_2016_Poster_v1_1c.pdf
http://bird-house.github.io/
http://birdhouse-workshop.readthedocs.io/en/latest/
http://birdhouse.readthedocs.io/en/latest/index.html#presentations-blog-posts
http://geoprocessing.info/index.html
http://pywps.org/
https://github.com/PyWPS/pywps-workshop
https://conda.io/docs/
https://www.anaconda.com/blog/developer-blog/conda-data-science/
https://docs.pytest.org/en/latest/
https://docs.python.org/3/howto/argparse.html
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://ioos.github.io/notebooks_demos/
http://matplotlib.org/
http://scitools.org.uk/cartopy/
http://scitools.org.uk/cartopy/docs/latest/matplotlib/intro.html
https://github.com/koldunovn/python_for_geosciences/blob/master/07%20-%20Other%20modules%20for%20geoscientists.ipynb
https://github.com/KMFleischer/PyEarthScience/
http://nbviewer.jupyter.org/github/julienchastang/unidata-python-workshop/blob/master/reading_netCDF.ipynb
http://nbviewer.jupyter.org/github/julienchastang/unidata-python-workshop/blob/master/reading_netCDF.ipynb

Birdhouse Documentation, Release 0.7.0

* http://schubert.atmos.colostate.edu/~cslocum/netcdf_example.html
OpenDAP:

* https://www.seegrid.csiro.au/wiki/pub/ AUKEGGS/Final Workshop/seminar.pdf
Docker:

e What is Docker?: https://www.docker.com/what-docker

* Docker Training: http://slides.com/dataduke/docker-001#/

¢ Play with Docker: http://labs.play-with-docker.com/

Todo List

Todo: This example with Flyingpigeon is outdated.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/example.rst,
line 4.)

Todo: Add PEPS instructions for more editors: PyCharm, Kate, Emacs, Vim, Spyder.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/guide_dev.rs
line 94.)

Todo: needs to be updated.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/overview.rst,
line 55.)

Todo: Describe the relationship between the frontend and Phoenix.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https
line 25.)

Todo: Examine the Birdhouse/Birdhouse-Docs to see if this section can be merged back to it and joined as a sub-
module here. Birds of interest are listed there.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https
line 166.)

Todo: How to add WPS, WMS, WES servers to PAVICS.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https
line 100.)

Todo:

4.2. Getting started with PYWPS 119

http://schubert.atmos.colostate.edu/~cslocum/netcdf_example.html
https://www.seegrid.csiro.au/wiki/pub/AUKEGGS/FinalWorkshop/seminar.pdf
https://www.docker.com/what-docker
http://slides.com/dataduke/docker-001#/
http://labs.play-with-docker.com/

Birdhouse Documentation, Release 0.7.0

* Add images for the step-by-step processes
* How to modify the meta data associated with layers (how they appear in the interface)

* Add advice on setting styles with SLD4raster and other tools/advice

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https
line 69.)

Todo: Base PAVICS installation is incomplete. The following lines refer to Phoenix instance. Need to specify which
birds are needed for a bare installation of PAVICS: Phoenix, FlyingPigeon, Malleefowl, Emu, etc.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https
line 59.)

Todo: Update the installation and config with security changes

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https
line 200.)

Todo: Document how to run integration tests

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https
line 5.)

Todo: How authorizations for services work (the concept) How to grant users access to data and services

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https
line 25.)

Todo: Take a systematic approach and link to other birds and libraries through intersphinx

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https
line 18.)

Todo: Review by CRIM.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https
line 20.)

Todo: Write tutorial on creating and launching workflows

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https
line 10.)

Todo: Describe how to use the Ul to add data to the workspace.

120 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https
line 7.)

Todo: Add ssh tunnel or jupyter console example.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https.
line 12.)

Todo: add travis example

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/_gitext/https.
line 6.)

Todo: explanation of enabling spinx automatic api documentation.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/guide_ WPS .
line 109.)

Todo: Add references to OGC testbed.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/projects.rst,
line 36.)

Todo: How to create a conda package

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/latest/docs/source/tutorial_wps.
line 183.)

4.2.2 Birdhouse Workshop

Welcome to the *Birdhouse™_ Workshop. This workshop is a hands-on session, which will guide you in creating a pro-
cess for a “Web Processing Service _. During the workshop you will learn how Birdhouse supports this development
cycle.

Warning: Under Construction ...

Useful Links

WPS Documentation

e What is WPS?

WPS on OSGeo Live

* WPS tutorial

OGC Web Processing Service Standard

4.2. Getting started with PYWPS 121

http://geoprocessing.info/wpsdoc/Concepts#what
http://download.osgeo.org/livedvd/doc-dev/standards/wps_overview.html
http://wiki.ieee-earth.org/Documents/GEOSS_Tutorials/GEOSS_Provider_Tutorials/Web_Processing_Service_Tutorial_for_GEOSS_Providers/Section_2:_Introduction_to_WPS
http://www.opengeospatial.org/standards/wps

Birdhouse Documentation, Release 0.7.0

* PyWPS Wiki
* GeoServer tutorial

Talks:
* The WPS 2.0 standard (preliminary information)
* WPS Application Patterns
* Using WPS (PyWPS) with Taverna Orchestration
* Pywps a tutorial for beginners and developers

* Zoo presentation foss4g.jp-2011

WPS Software

WPS Server Software:
s PyWPS
* GeoServer - http://docs.geoserver.org/stable/en/user/services/wps/index.html
* Zoo-http://www.zoo-project.org/
* COWS

* Deegree - http://www.deegree.org/

52 North - http://52north.org/communities/geoprocessing/wps/
WPS Client Software:
e OWSLib Python Client
* OpenLayers WPS Plugin - http://dev.openlayers.org/docs/files/OpenLayers/WPSClient-js.html
* GeoTools WPS Module - http://docs.geotools.org/latest/userguide/unsupported/wps.html
* 52 North Java Client - http://52north.org/communities/geoprocessing/wps/index.html
* 52 North Javascript Client - http://geoprocessing.demo.52north.org:8080
* WPS Javascript Client by Boundless - https://github.com/boundlessgeo/wps-gui
QGIS Desktop GIS with wps plugins:
* http://www.qgis.org/en/site/
* http://plugins.qgis.org/plugins/wps/
* http://geolabs.fr/plugins.xml
uDig Desktop GIS with wps plugins:
* http://udig.refractions.net/
* https://udig.github.io/docs/user/reference/Using%20the %20WPS %20plugin.html
e https://github.com/52North/uDig-WPS-plugin (outdated)

122 Chapter 4. Tutorials

http://wiki.rsg.pml.ac.uk/pywps/Main_Page
http://geoserver.geo-solutions.it/edu/en/wps/index.html
http://www.slideshare.net/Bender82/2014-0715the-wps-20-standardpreliminary?related=2
http://www.slideshare.net/nuest/wps-application-patterns?related=1
http://www.slideshare.net/JorgeMendesdeJesus/taverna?related=2
http://www.slideshare.net/JorgeMendesdeJesus/pywps-a-tutorial-for-beginners-and-developers?related=3
http://www.slideshare.net/masarunarazaki/zoo-presentation-foss4gjp2011?related=4
http://docs.geoserver.org/stable/en/user/services/wps/index.html
http://www.deegree.org/
http://52north.org/communities/geoprocessing/wps/
http://dev.openlayers.org/docs/files/OpenLayers/WPSClient-js.html
http://docs.geotools.org/latest/userguide/unsupported/wps.html
http://52north.org/communities/geoprocessing/wps/index.html
http://geoprocessing.demo.52north.org:8080
https://github.com/boundlessgeo/wps-gui
http://www.qgis.org/en/site/
http://plugins.qgis.org/plugins/wps/
http://geolabs.fr/plugins.xml
http://udig.refractions.net/
https://udig.github.io/docs/user/reference/Using%20the%20WPS%20plugin.html
https://github.com/52North/uDig-WPS-plugin

Birdhouse Documentation, Release 0.7.0

WMS Software

WMS server:
* ncWMS2 - http://reading-escience-centre.github.io/edal-java/
e adaguc - http://adaguc.knmi.nl/
e sci-wms - http://sci-wms.github.io/sci-wms/
WMS clients:
* OpenLayers - http://openlayers.org/
¢ Leaflet - http://leafletjs.com/
— time dimension - http://apps.socib.es/Leaflet. TimeDimension/examples/

* GeoExt - http://geoext.github.io/geoext2/

Scientific Workflow Tools

Workflow Engines:
 Dispeldpy
* RestFlow
* Taverna
e VisTrails
» Kepler - https://kepler-project.org/
e KNIME - http://www.knime.org/
Taverna with WPS:
e http://rsg.pml.ac.uk/wps/generic.cgi?request=GetCapabilities&service=WPS
¢ https://www.youtube.com/watch?v=JNAtoOejVIo

* https://taverna.incubator.apache.org/introduction/services-in-taverna.html

https://github.com/myGrid/small-area-estimator
* http://comments.gmane.org/gmane.science.biology.informatics.taverna.user/1415
* http://dev.mygrid.org.uk/wiki/display/developer/SCUFL2
VisTrails with WPS:
e https://github.com/ictdeo/eodvistrails
* http://proj.badc.rl.ac.uk/cows/wiki/CowsWps/CDOWPS WorkingGroup/WPS AndWorkflows
e http://www.kitware.com/source/home/post/105
Kepler with WPS:
* https://kepler-project.org/users/sample-workflows
Workflows with PyWPS:
* https://github.com/AnnaHomolka/PyWPS/blob/master/doc/tutorial _process_chaining.pdf
Other Workflow Engines:

4.2. Getting started with PYWPS 123

http://reading-escience-centre.github.io/edal-java/
http://adaguc.knmi.nl/
http://sci-wms.github.io/sci-wms/
http://openlayers.org/
http://leafletjs.com/
http://apps.socib.es/Leaflet.TimeDimension/examples/
http://geoext.github.io/geoext2/
https://kepler-project.org/
http://www.knime.org/
https://www.youtube.com/watch?v=JNAtoOejVIo
https://taverna.incubator.apache.org/introduction/services-in-taverna.html
https://github.com/myGrid/small-area-estimator
http://comments.gmane.org/gmane.science.biology.informatics.taverna.user/1415
http://dev.mygrid.org.uk/wiki/display/developer/SCUFL2
https://github.com/ict4eo/eo4vistrails
http://proj.badc.rl.ac.uk/cows/wiki/CowsWps/CDOWPSWorkingGroup/WPSAndWorkflows
https://kepler-project.org/users/sample-workflows
https://github.com/AnnaHomolka/PyWPS/blob/master/doc/tutorial_process_chaining.pdf

Birdhouse Documentation, Release 0.7.0

* http://www.yawlfoundation.org/
* https://en.wikipedia.org/wiki/Scientific_workflow_system

* http://airavata.apache.org/

http://search.cpan.org/~nuffin/Class- Workflow-0.11/

Scientific Python

* Anaconda - https://www.continuum.io/downloads

Completely free enterprise-ready Python distribution for large-scale data processing, predictive analytics, and scientific
computing

* pandas - http://pandas.pydata.org/
Python Data Analysis Library

Python in Climate Science

* OpenClimateGIS - https://earthsystemcog.org/projects/openclimategis/

OpenClimateGIS is a Python package designed for geospatial manipulation, subsetting, computation, and translation
of climate datasets stored in local NetCDF files or files served through THREDDS data servers. [..]

* ICCLIM (i see clim .. .) - https://github.com/cerfacs-globc/icclim

Python library for climate indices calculation. Documentation at http://icclim.readthedocs.io/en/latest/

Python Web Frameworks and Utils

¢ Pyramid - http://www.pylonsproject.org/

* Authomatic - http://peterhudec.github.io/authomatic/

* Bootstrap - http://getbootstrap.com/

* Bootstrap Tutorial - http://www.w3schools.com/bootstrap/default.asp

e Deform - https://github.com/Pylons/deform

e Deform with Bootstrap demo - http://deform2demo.repoze.org/

* Colander - http://docs.pylonsproject.org/projects/colander/en/latest/index.html
e TinyMCE - https://www.tinymce.com/

* Font Awesome - http://fontawesome.io/

* Leaflet - http://leafletjs.com/

¢ Leaflet TimeDimension - http://apps.socib.es/Leaflet. TimeDimension/examples/

124 Chapter 4. Tutorials

https://en.wikipedia.org/wiki/Scientific_workflow_system
http://airavata.apache.org/
http://search.cpan.org/~nuffin/Class-Workflow-0.11/
https://www.continuum.io/downloads
http://pandas.pydata.org/
https://earthsystemcog.org/projects/openclimategis/
https://github.com/cerfacs-globc/icclim
http://icclim.readthedocs.io/en/latest/
http://www.pylonsproject.org/
http://peterhudec.github.io/authomatic/
http://getbootstrap.com/
http://www.w3schools.com/bootstrap/default.asp
https://github.com/Pylons/deform
http://deform2demo.repoze.org/
http://docs.pylonsproject.org/projects/colander/en/latest/index.html
https://www.tinymce.com/
http://fontawesome.io/
http://leafletjs.com/
http://apps.socib.es/Leaflet.TimeDimension/examples/

Birdhouse Documentation, Release 0.7.0

Example WPS Services

List of available Web Processing Services:

e Zoo WPS for PublicaMundi project - http://zoo.dev.publicamundi.eu/cgi-bin/
zoo_loader.cgi?service=WPS&version=1.0.0&request=GetCapabilities

* GeoServer Demo WPS - http://demo.opengeo.org/geoserver/wps?
request=GetCapabilities&service=WPS

e USGS Geo Data Portal- http://cida.usgs.gov/climate/gdp/process/
WebProcessingService

« KNMI climatedimpact Portal - http://climatedimpact.eu//impactportal /WPS?
request=GetCapabilities&service=WPS

¢ BADCCEDA -http://ceda-wps2.badc.rl.ac.uk/wps?request=GetCapabilities&service=WPS
e delatres - http://dtvirt5.deltares.nl/wps/?Request=GetCapabilities&Service=WPS

e 52 North - http://geoprocessing.demo.52north.org:8080/52n-wps—webapp-3.3.1/
WebProcessingService?Request=GetCapabilities&Service=WPS

e 52 North-http://geoprocessing.demo.52north.org:8080/52n-wps—-webapp-3.3.1-gt/
WebProcessingService?Request=GetCapabilities&Service=WPS

* 700 Demo WPS - http://zoo-project.org/cgi-bin/zoo_loader3.cgi?
Request=GetCapabilities&Service=WPS

* British Antarctic Survey WPS for Meteorological Data - http://sosmet.nerc-bas.ac.uk:8080/
wpsmet /WebProcessingService?Request=GetCapabilities&Service=WPS

* PyWPSDemo-http://apps.esdi-humboldt.cz/pywps/?request=GetCapabilities&service=WPS&ver:
0.0

Alternatives to WPS

* XML-RPC: Simple cross-platform distributed computing, based on the standards of the Internet. - http://xmlrpc.
scripting.com/

* Swagger is a simple yet powerful representation of your RESTful API. - http://swagger.io/

Related Projects

* http://geopython.github.io/

* http://geonode.org/

* http://esgf.llnl.gov/

* http://climate4impact.eu/impactportal/general/index.jsp
* http://adaguc.knmi.nl/

* http://wps-webl.ceda.ac.uk/ui/home

* https://freva.met.fu-berlin.de/

https://climate.apache.org/

4.2. Getting started with PYWPS 125

http://xmlrpc.scripting.com/
http://xmlrpc.scripting.com/
http://swagger.io/
http://geopython.github.io/
http://geonode.org/
http://esgf.llnl.gov/
http://climate4impact.eu/impactportal/general/index.jsp
http://adaguc.knmi.nl/
http://wps-web1.ceda.ac.uk/ui/home
https://climate.apache.org/

Birdhouse Documentation, Release 0.7.0

4.3 Calling a Service (birdy)

4.3.1 Examples

You can try these notebook online using Binder, or view the notebooks on NBViewer.

TETTET TIMIEWET
Basic Usage

Birdy WPSClient example with Emu WPS

: from birdy import WPSClient

Use Emu WPS

https://github.com/bird-house/emu

: emu = WPSClient (url="http://localhost:5000/wps")
emu_1i = WPSClient (url='http://localhost:5000/wps', progress=True)

Get Infos about hello

: emu.hello?

Run hello

: emu.hello(name="Birdy') .get () [0]

Run a long running process

: result = emu_i.sleep(delay="1.0")

: result.get () [0]

126

Chapter 4. Tutorials

https://mybinder.org/v2/gh/bird-house/birdy.git/master?filepath=notebooks
https://nbviewer.jupyter.org/github/bird-house/birdy/tree/master/notebooks/
https://github.com/bird-house/emu

Birdhouse Documentation, Release 0.7.0

Run a process returning a reference to a text document

emu.chomsky (times="'5") .get () [0]

Pass a local file to a remote process

The client can look up local files on this machine and embed their content in the WPS request to the server. Just set
the path to the file or an opened file-like object.

fn = '"/tmp/text.txt'

with open(fn, 'w') as f:

f.write('Just an example')
emu.wordcounter (text=fn) .get (asobj=True)

Automatically convert the output to a Python object

The client is able to convert input objects into strings to create requests, and also convert output strings into python
objects. This can be demonstrated with the inout process, which simply takes a variety of LiteralInputs of
different data types and directs them to the output without any change.

emu.inout?

import datetime as dt
result = emu.inout (string='test', int=1, float=5.6, boolean=True, time='15:45", |
—datetime=dt .datetime (2018, 12, 12), text=None, dataset=None)

Get result as object

result.get (asobj=True) .text

Example with multiple_outputs
Similarly, the multiple_outputs function returns a text /plain file. The converter will automatically convert
the text file into a string.

out = emu.multiple_outputs(l) .get (asobj=True) [0]
print (out)

. or use the metalink library on the referenced metalink file:

out = emu.multiple_outputs (l) .get (asobj=False) [0]
print (out)

from metalink import download
download.get (out, path='/tmp', segmented=False)

4.3. Calling a Service (birdy) 127

Birdhouse Documentation, Release 0.7.0

Interactive usage of Birdy WPSClient with widgets

from birdy import WPSClient
from birdy.client import nb_form
emu = WPSClient (url='http://localhost:5000/wps")

resp = nb_form(emu, 'binaryoperatorfornumbers')
resp.widget.result.get (asobj=True)
nb_form(emu, 'non.py-id')

nb_form(emu, 'chomsky')

OWSLib versus Birdy
This notebook shows a side-by-side comparison of owslib.wps.WebProcessingService and birdy.
WPSClient.

from owslib.wps import WebProcessingService
from birdy import WPSClient

url = "https://bovec.dkrz.de/ows/proxy/emu?Service=WPS&Request=GetCapabilitiess&
—Version=1.0.0"

wps = WebProcessingService (url)
WPSClient (url=url)

cli

Displaying available processes

With owslib, wps.processes is the list of processes offered by the server. With birdy, the client is like a
module with functions. So you just write c11i. and press Tab to display a drop-down menu of processes.

: wps.processes

Documentation about a process

With ows1ib, the process title and abstract can be obtained simply by looking at these attributes. For the process
inputs, we need to iterate on the inputs and access their individual attributes. To facilitate this, ows1ib.wps provides
the print InputOuput function.

With birdy, just type help (cli.hello) and the docstring will show up in your console. With the IPython
console or a Jupyter Notebook, c11i.hello? would do as well. The docstring follows the NumPy convention.

from owslib.wps import printInputOutput
p = wps.describeprocess('hello'")

print ("Title: ", p.title)

print ("Abstract: ", p.abstract)

for inpt in p.datalnputs:
printInputOutput (inpt)

128 Chapter 4. Tutorials

]:

Birdhouse Documentation, Release 0.7.0

help(cli.hello)

Launching a process and retrieving literal outputs

With ows1ib, processes are launched using the execute method. Inputs are an an argument to execute and
defined by a list of key-value tuples. These keys are the input names, and the values are string representations. The
execute method returns a WPSExecution object, which defines a number of methods and attributes, including
isComplete and isSucceeded. The process outputs are stored in the processOutputs list, whose content is
stored in the dat a attribute. Note that this data is a list of strings, so we may have to convertittoa f1loat to use it.

resp = wps.execute ('binaryoperatorfornumbers', inputs=[('inputa', '1.0'), ('inputb',
—'2.0"), ('operator', 'add')])
if resp.isSucceded:

output, = resp.processOutputs

print (output.data)

With birdy, inputs are just typical keyword arguments, and outputs are already converted into python objects. Since
some processes may have multiple outputs, processes always return a namedtuple, even in the case where there is
only a single output.

z = cli.binaryoperatorfornumbers(l, 2, operator='add').get () [0]
Z

out = cli.inout () .get ()

out .date

Retrieving outputs by references

For ComplexData objects, WPS servers often return a reference to the output (an http link) instead of the actual
data. This is useful if that output is to serve as an input to another process, so as to avoid passing back and forth large
files for nothing.

With ows1ib, that means that the data attribute of the output is empty, and we instead access the reference
attribute. The referenced file can be written to the local disk using the writeToDisk method.

With birdy, the outputs are by default the references themselves, but it’s also possible to download these references in
the background and convert them into python objects. To trigger this automatic conversion, set convert_obJjects
to True when instantating the client WPSClient (url, convert_objects=True). Ini the example below,
the first output is a plain text file, and the second output is a json file. The text file is converted into a string, and the
json file into a dictionary.

resp = wps.execute('multiple_outputs', inputs=[('count', '1"')])
output, ref = resp.processOutputs

print (output.reference)

print (ref.reference)

output .writeToDisk ('/tmp/output.txt")

output = cli.multiple_outputs(l).get () [0]

print (output)

as reference

output = cli.multiple_outputs(1l) .get (asobj=True) [0]
print (output)

4.3. Calling a Service (birdy) 129

Birdhouse Documentation, Release 0.7.0

Demo

AGU 2018 Demo

This notebook shows how to use birdy’s high-level interface to WPS processes.

Here we access a test server called Emu offering a dozen or so dummy processes.

The shell interface

%$%bash

export WPS_SERVICE="http://localhost:5000/wps?Service=WPS&Request=GetCapabilitiesé&

—Version=1.0.0"
birdy -h

Usage: birdy [OPTIONS]

COMMAND [ARGS]...

Birdy is a command line client for Web Processing Services.

Documentation is available on readthedocs:
http://birdy.readthedocs.org/en/latest/

Options:
—--version
——cert TEXT

-S, ——-send

-s, ——sync

-t, ——token TEXT

-1, —--language TEXT
-L, —--show-languages
-h, —-help

Commands:
ultimate_question
sleep
nap
bbox
hello
dummyprocess
wordcounter
chomsky
inout

Show the version and exit.
Client side certificate containing both certificate
and private key.

Send client side certificate to WPS. Default: false
Execute process in sync mode. Default: async mode.
Token to access the WPS service.

Set the accepted language to send to the WPS service.
Show a list of accepted languages for the WPS service.
Show this message and exit.

Answer to the ultimate question: This process...
Sleep Process: Testing a long running process, ...
Afternoon Nap (supports sync calls only): This...
Bounding box in- and out: Give bounding box, ...
Say Hello: Just says a friendly Hello.Returns a...
Dummy Process: DummyProcess to check the WPS...
Word Counter: Counts words in a given text.
Chomsky text generator: Generates a random...

In and Out: Testing all WPS input and output...

binaryoperatorfornumbers Binary Operator for Numbers: Performs operation...

show_error
multiple_outputs
esgf_demo
output_formats
poly_centroid

Show a WPS Error: This process will fail...
Multiple Outputs: Produces multiple files and...
ESGF Demo: Shows how to use WPS metadata for...
Return different output formats.: Dummy process...
Approximate centroid of a polygon.: Return the...

ncmeta Return NetCDF Metadata: Return metadata from a...
non.py-id Dummy process including non-pythonic...
simple_dry_run Simple Dry Run: A dummy download as simple...
ncml Test NcML THREDDS capability: Return links to
an. ..
translation Translated process: Process including...
130 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

$%bash

export WPS_SERVICE="http://localhost:5000/wps?Service=WPS&Request=GetCapabilities&
—Version=1.0.0"

birdy hello -h

Usage: birdy hello [OPTIONS]

Say Hello: Just says a friendly Hello.Returns a literal string output with
Hello plus the inputed name.

Options:
—--version Show the version and exit.
—-—name TEXT Your name
——output_formats TEXT... Modify output format (optional). Takes three
arguments, output name, as_reference (True, False,
or None for process default), and mimetype (None
for process default).
-h, --help Show this message and exit.
%$%bash

export WPS_SERVICE="http://localhost:5000/wps?Service=WPS&Request=GetCapabilities&
—Version=1.0.0"
birdy hello —--name stranger

Output:
output=['Hello stranger']

The python interface

The WPSClient function creates a mock python module whose functions actually call a remote WPS process. The
docstring and signature of the function are dynamically created from the remote’s process description. If you type
wps . and then press Tab, you should see a drop-down list of available processes. Simply call he1p on each process
of type ? after the process to print the docstring for that process.

from birdy import WPSClient

url = "http://localhost:5000/wps?Service=WPS&Request=GetCapabilities&Version=1.0.0"
wps = WPSClient (url, verify=False)

help (wps.binaryoperatorfornumbers)

Help on method binaryoperatorfornumbers in module birdy.client.base:

binaryoperatorfornumbers (inputa=2.0, inputb=3.0, operator='add', output_formats=None)
—method of birdy.client.base.WPSClient instance

Performs operation on two numbers and returns the answer. This example process is_
—taken from Climate4Impact.

Parameters

inputa : float
Enter Input 1

inputb : float
Enter Input 2

operator : {'add', 'substract', 'divide', 'multiply'}string
Choose a binary Operator

(continues on next page)

4.3. Calling a Service (birdy) 131

Birdhouse Documentation, Release 0.7.0

(continued from previous page)

Returns

output : float
Binary operator result

Type wps . and the press Tab, you should see a drop-down list of available processes.

wps.

Process execution

Processes are executed by calling the function. Each process instantaneoulsy returns a WPSExecute object. The
actual output values of the process are obtained by calling the get method. This get method returns a namedtuple
storing the process outputs as native python objects.

resp = wps.binaryoperatorfornumbers(l, 2, operator='add')
print (resp)
resp.get ()

<birdy.client.utils.WPSExecution object at 0x108237d30>

binaryoperatorfornumbersResponse (
output=3.0

For instance, the inout function returns a wide variety of data types (float, integers, dates, etc) all of which are
converted into a corresponding python type.

wps.inout () .get ()

inoutResponse (
string='This is Jjust a string’,
int=7,

float=3.14,

boolean=True,

angle=90.0,

time=datetime.time (12, 0),

date=datetime.date (2012, 5, 1),

datetime=datetime.datetime (2016, 9, 2, 12, 0, tzinfo=tzutc()),

string_choice='scissor',

string_multiple_choice='gentle albatros',

int_range=1,

any_value='any value',

ref_value='Scotland',

text="http://localhost:5000/ocutputs/e7700e9c-559c-11leb-bcba-784f435e8862/input.txt
“"l

dataset="http://localhost:5000/outputs/e7700e9c-559c-1leb-bcba-784£f435e8862/input_
—pdObgv88.txt"',

bbox=BoundingBox (minx='0.0"', miny='0.0"', maxx='10.0', maxy='10.0', crs=Crs (id=
—'epsg:4326"', naming_authority=None, category=None, type=None, authority='EPSG',
—version=None, code=4326, axisorder='yx', encoding='code'), dimensions=2)

)

132 Chapter 4. Tutorials

Birdhouse Documentation, Release 0.7.0

Retrieving outputs by references

For ComplexData objects, WPS servers often return a reference to the output (an http link) instead of the actual
data. This is useful if that output is to serve as an input to another process, so as to avoid passing back and forth large
files for nothing.

With birdy, the outputs are by default return values are the references themselves, but it’s also possible to down-
load these references in the background and convert them into python objects. To trigger this automatic conversion,
set asobj to True when calling the get method. In the example below, we’re using a dummy process called
output_formats, whose first output is a netCDF file, and second output is a json file. With asobj=True, the
netCDF file is opened and returned as a netcdf4 .Dataset instance, and the json file into a dictionary.

NBVAIL_SKIP

This cell is failing due to an unautheticated SSL certificate
out = wps.output_formats ()

nc, json = out.get ()

print (out.get ())

ds, Jjson = out.get (asobj=True)

print (json)

ds

output__formatsResponse (
netcdf="http://localhost:5000/outputs/e78722ee-559c-11eb-8bc2-784f435e8862/dummy .

—nc',
json='http://localhost:5000/outputs/e78722ee-559c-11eb-8bc2-784£435e8862/dummy .

—Jjson'

)

{'testing': [1, 2]}

<xarray.Dataset>
Dimensions: (time: 1)
Coordinates:
* time (time) float64 42.0

Data variables:

empty
Attributes:

title: Test dataset

Progress bar

It’s possible to display a progress bar when calling a process. The interface to do so at the moment goes like this. Note
that the cancel button does not do much here, as the WPS server does not support interruption requests.

: wps = WPSClient (

'http://localhost:5000/wps’',
progress=True)
resp = wps.sleep()

HBox (children= (IntProgress (value=0, bar_style='info', description='Processing:"'),
—Button (button_style="'danger'...

4.3. Calling a Service (birdy) 133

Birdhouse Documentation, Release 0.7.0

4.3.2 Examples

You can try these notebook online using Binder, or view the notebooks on NBViewer.

4.4 Basic Usage
4.5 Demo

4.6 WPS general usage

In the following we show an example with a Word Counter function which is enabled as a web-service using WPS.

* Defining a Word Counter function
WPS definition of Word Counter

* Chaining WPS processes

WPS process implementation with PyWPS
* Using WPS

* Calling Word Counter with Birdy

— Hello World WPS (emu):

— Create a conda package

— Python syntax:

4.6.1 Defining a Word Counter function

In the following example we will use the Word Counter function:

def count_words (file):
"""Calculates number of words in text document.
Returns JSON document with occurrences of each word.

mmn

return json_doc

This Python function has the following parts:
* a name or identifier: count_words
* adescription: Calculates number of words ...
* input parameters: file (mime type text/plain)

* output parameters: json_doc (mime type application/json)

134 Chapter 4. Tutorials

https://mybinder.org/v2/gh/bird-house/birdy.git/master?filepath=notebooks
https://nbviewer.jupyter.org/github/bird-house/birdy/tree/master/notebooks/

Birdhouse Documentation, Release 0.7.0

Now, we would like to run this function remotely using a simple web-service. To get this web-service we can use
WPS. The function parts (name, parameters) are all we need to know to define a WPS process.

4.6.2 WPS definition of Word Counter

To add a new proccess you need to define the input and output parameters. For the Word Counter process this looks
like the following.

Text Document

JSON Document

Here is another example for a Text Generator process. We will use it later for chaining processes.

Number of
Phrases

Text Document

There are two types of input/output parameters:
* Literal Parameters (green): these are simple data types like integer, boolean, string, . ..

e Complex Parameters (yellow): these are documents with a mime-type (xml, cvs, jpg, netcdf, ...) provided as
URL or directly.

An input/output parameter has:
* aname or identifier
* adescriptive title
* an abstract giving a description of the parameter
e multiplicity ... how often can this parameter occur: optional, once, many ...

* in case of literal parameters a list of allowed values.

4.6. WPS general usage 135

Birdhouse Documentation, Release 0.7.0

For more details see the following WPS Tutorial.

4.6.3 Chaining WPS processes

If you know the input/output parameters of processes you can chain processes. For example we will chain a Text
Generator process to our Word Counter process.

Number of
Phrases

JSON
Document

The Text document output of the Text Generator process becomes the input of Word Counter process.

You can chain process manually by calling them one after the other. The WPS specification allows you to also chain
process with a single WPS request. To get even more flexibility (using if-clauses, loops, monitoring ...) you can also
use a workflow engine (Taverna, VisTrails, Dispeldpy, ...).

You will find more details about chaining in the GeoProcessing document and the GeoServer Tutorial.

4.6.4 WPS process implementation with PyWPS

There are several WPS implementations available (GeoServer, COWS, ...). In birdhouse, we use the Python imple-
mentation PyWPS. In PyWPS the Word Counter process could look like the following:

You can see the definition of the input and output parameters and the execute () method where the real
count_words () function is called. You will find more details about implementing a WPS process in the PyWPS
Tutorial.

136 Chapter 4. Tutorials

http://wiki.ieee-earth.org/Documents/GEOSS_Tutorials/GEOSS_Provider_Tutorials/Web_Processing_Service_Tutorial_for_GEOSS_Providers/Section_2:_Introduction_to_WPS
http://geoprocessing.info/wpsdoc/Concepts#chaining
http://geoserver.geo-solutions.it/edu/en/wps/chaining_processes.html
http://pywps.org/docs/
http://pywps.org/docs/

Birdhouse Documentation, Release 0.7.0

4.6.5 Using WPS

A WPS service has three operations:
* GetCapabilities: which processes are available
* DescribeProcess: what are the input and output parameters of a specific process
e Execute: run a process with parameters.

The following diagram shows these operations:

../_images/wps_usage.png

To call these process one can use simple HTTP request with key/value pairs:

* GetCapabilites request:

http://localhost:8094/wps?&request=GetCapabilities&service=WPS&version=1.0.0

* DescribeProcess request for wordcount process:

http://localhost:8094/wps?&request=DescribeProcessé&service=WPS&version=1.0.0&
—identifier=wordcount

Exceute request:

http://localhost:8094/wps?request=Execute&service=WPS&version=1.0.0&
—~ldentifier=wordcount
&Datalnputs=text=http://birdhouse.readthedocs.org/en/
—latest/index.html

A process can be run synchronously or asynchronously:

e sync: You make a HTTP request and you need to wait until the request returns with a response (or timeout).
This is only useful for short-running processes.

e async: You make a HTTP request and you get immediately a response document. This document gives you a
link to a status document which you need to poll until the process has finished.

Processes can be run with simple HTTP get-requests (as shown above) and also with HTTP post-requests. In the later
case XML documents are exchanged with the communication details (process, parameters, ...).

For more details see the following WPS Tutorial.

There are also some [Python notebooks which show the usage of WPS.

4.6. WPS general usage 137

http://wiki.ieee-earth.org/Documents/GEOSS_Tutorials/GEOSS_Provider_Tutorials/Web_Processing_Service_Tutorial_for_GEOSS_Providers/Section_2:_Introduction_to_WPS
http://nbviewer.jupyter.org/github/bird-house/birdhouse-docs/tree/master/notebooks/tutorial/

Birdhouse Documentation, Release 0.7.0

4.6.6 Calling Word Counter with Birdy

Now, we are using Birdy wps command line client to access the wordcount process.

Which proccess are available (GetCapabilities):

$ birdy -h
usage: birdy [-h] <command> [<args>]

optional arguments:
-h, --help show this help message and exit

command:
List of available commands (wps processes)

{chomsky,helloworld, inout,ultimatequestionprocess, wordcount}
Run "birdy <command> -h" to get additional help.

What input and output parameters does wordcount have (DescribeProcess):

$ birdy wordcount -h
usage: birdy wordcount [-h] —--text [TEXT] [--output [{output} [{output} ...]11]

optional arguments:
-h, —--help show this help message and exit
—-—text [TEXT] Text document: URL of text document, mime
types=text/plain
—-—output [{output} [{output} ...]]
Output: output=Word count result, mime
types=text/plain (default: all outputs)

Run wordcount with a text document (Execute):

$ birdy wordcount --text http://birdhouse.readthedocs.org/en/latest/index.html
Execution status: ProcessAccepted

Execution status: ProcessSucceeded

Output:
output=http://localhost:8090/wpsoutputs/emu/output-37445d08-cf0f-1led-abTe-
—68£72837elb4.txt

Hello World WPS (emu):

* Emu Example with Docker

Create a conda package

Todo: How to create a conda package

138 Chapter 4. Tutorials

http://birdy.readthedocs.io/en/latest/
https://emu.readthedocs.io/en/latest/tutorial.html#tutorial

Birdhouse Documentation, Release 0.7.0

Python syntax:

"""pPython WPS execute"""

from owslib.wps import WebProcessingService, monitorExecution
from os import system

4.7 Climate Indices (finch):

WPS finch is providing services to calculate climate indices widely used in climate change adaptation planing pro-
cesses.

Have a look on the examples of the finch documentation: https://pavics-sdi.readthedocs.io/projects/finch/en/latest/
notebooks/index.html

4.8 Hydrological models (raven):

WPS raven is providing hydrological models for e.g. hydro-power controlling and sustainable planing

Have a look on the examples of the raven documentation: https://pavics-raven.readthedocs.io/en/latest/notebooks/
index.html

4.9 Server administration

4.9.1 birdhouse installation

* Requirements
* Installing from source

* Nginx, gunicorn and supervisor

 Using birdhouse with Docker

Warning: This section is outdated ...

Birdhouse consists of several components like Malleefowl and Emu. Each of them can be installed individually. The
installation is done using the Python-based build system Buildout. Most of the dependencies are maintained in the
Anaconda Python distribution. For convenience, each birdhouse component has a Makefile to ease the installation so
you don’t need to know how to call the Buildout build tool.

4.7. Climate Indices (finch): 139

https://pavics-sdi.readthedocs.io/projects/finch/en/latest/notebooks/index.html
https://pavics-sdi.readthedocs.io/projects/finch/en/latest/notebooks/index.html
https://pavics-raven.readthedocs.io/en/latest/notebooks/index.html
https://pavics-raven.readthedocs.io/en/latest/notebooks/index.html
http://malleefowl.readthedocs.io/en/latest/
http://emu.readthedocs.io/en/latest/
https://birdhousebuilderbootstrap.readthedocs.io/en/latest/usage.html#makefile

Birdhouse Documentation, Release 0.7.0

Requirements

Birdhouse uses Anaconda Python distribution for most of the dependencies. If Anaconda is not already installed,
it will be installed during the installation process. Anaconda has packages for Linux, MacOSX and Windows. But
not all packages used by birdhouse are already available in the default package channel of Anaconda. The missing
packages are supplied by birdhouse on Binstar. But we currently maintain only packages for Linux 64-bit and partly
for MacOSX.

So the short answer to the requirements is: you need a Linux 64-bit installation.
Birdhouse is currently used on Ubuntu 14.04 and CentOS 6.x. It should also work on Debian, LinuxMint and Fedora.

Birdhouse also installs a few system packages using apt-get on Debian based distributions and yum on RedHat/CentOS
based distributions. For this you need a user account with sudo permissions. Installing system packages can be done
in a separate step. So your installation user does not need any special permissions. All installed files will go into a
birdhouse Anaconda environment in the home folder of the installation user.

Installing from source

The installation of birdhouse components from source is done with some few commands. Here is an example for the
Emu WPS service:

git clone https://github.com/bird-house/emu.git
cd emu

make clean install

make start

firefox http://localhost:8094/wps

v v r

All the birdhouse components follow the same installation pattern. If you want to see all the options of the Makefile
then type:

$ make help

You will find more information about these options in the Makefile documentation.

Read the documention of each birdhouse component for the details of the installation and how to configure the compo-
nents. The birdhouse bootstrap documentation gives some examples of the different ways of making the installation.

On the WPS client side we have:
e Phoenix: a Pyramid web application.
* Birdy: a simple WPS command line tool.
On the WPS server side we have:
* Malleefowl: provides base WPS services to access data.
* Flyingpigeon: provides WPS services for the climate impact community.
* Hummingbird: provides WPS services for CDO and climate metadata checks.

e Emu: just some WPS processes for testing.

140 Chapter 4. Tutorials

https://birdhousebuilderbootstrap.readthedocs.io/en/latest/usage.html#makefile
https://birdhousebuilderbootstrap.readthedocs.io/en/latest/index.html#introduction
https://birdhousebuilderbootstrap.readthedocs.io/en/latest/examples.html#examples
http://pyramid-phoenix.readthedocs.io/en/latest/
http://birdy.readthedocs.io/en/latest/
http://malleefowl.readthedocs.io/en/latest/
http://flyingpigeon.readthedocs.io/en/latest/
http://birdhouse-hummingbird.readthedocs.io/en/latest/
http://emu.readthedocs.io/en/latest/

Birdhouse Documentation, Release 0.7.0

Nginx, gunicorn and supervisor

Birdhouse sets up a PyWPS server (and also the Phoenix web application) using Buildout. We use the Gunicorn HTTP
application server (similar to Tomcat for Java servlet applications) to run these web applications with the WSG/
interface. In front of the Gunicorn application server, we use the Nginx HTTP server (similar to the Apache web
server). All these web services are started/stopped and monitored by a Supervisor service.

See the following image for how this looks like:

Mon itor (HTTP)

vl

¢WSGI T
Example:
Pyramid Phoenix

When installing a birdhouse WPS service, you don’t need to care about this setup. This is all done by Buildout and
using some extensions provided by birdhouse.

The Makefile of a birdhouse application has convenience targets to start/stop a WPS service controlled by the Super-
visor and to check the status:

$ make start # start wps service
$ make stop # stop wps service
$ make status # show status of wps service

Supervisor status
/home/pingu/.conda/envs/birdhouse/bin/supervisorctl status

emu RUNNING pid 25698, uptime 0:00:02
malleefowl RUNNING pid 25702, uptime 0:00:02
mongodb RUNNING pid 25691, uptime 0:00:02
nginx RUNNING pid 25699, uptime 0:00:02
phoenix RUNNING pid 25694, uptime 0:00:02
pycsw RUNNING pid 25700, uptime 0:00:02
tomcat RUNNING pid 25693, uptime 0:00:02

You can also use the Supervisor monitor web service which by default is available on port http://localhost:9001/. The
Supervisor monitor app looks like in the following screenshot.

4.9. Server administration 141

http://localhost:9001/

Birdhouse Documentation, Release 0.7.0

Supervisor.....

| Page refreshed at Fri Mar 13 17:12:25 2015 ‘

| REFRESH | [RESTART ALL | [sTOP ALL |

State Description MName Action

running pid 28435, uptime 0:00:05 emu Restart Stop Clearlog Tail f
running pid 28432, uptime 0:00:05 flyingpigeon Restart Stop Clearlog Tail -f
running pid 28440, uptime 0:00:05 hummingbird Bestart Stop Clearlog Tail -f
running pid 28438, uptime 0:00:05 malleefowl Restart Stop Clearlog Tail f
running pid 28431, uptime 0:00:05 mongodb Restart Stop Clearlog Tail -f
running pid 28436, uptime 0:00:05 nginx Restart Stop Clearlog Tail -f
running pid 28434, uptime 0:00:05 phoenix Restart Stop Clearlog Tail f
running pid 28437, uptime 0:00:05 pycsw Restart Stop Clearlog Tail-f
running pid 28433, uptime 0:00:05 tomcat Restart Stop Clearlog Tail -f

Using birdhouse with Docker

An alternative way to install and deploy birdhouse Web Processing Services is by using Docker. The birdhouse WPS
servers are available as a Docker image on Docker Hub. See an example on how to use them with the Emu WPS
Docker image.

4.9.2 birdhouse administration

e Set up a birdhouse ecosystem server

General Remarks

Prepare Installation

Get the source code from GitHub

Run Installation

Start the Services

— Launching the Phoenix Web App

— Register a service in Phoenix Web App

Launching a Job

Changing the default configuration

Update Phoenix Password
* Backups

* Asking for Support

142 Chapter 4. Tutorials

https://hub.docker.com/r/birdhouse/
https://emu.readthedocs.io/en/latest/tutorial.html#tutorial
https://emu.readthedocs.io/en/latest/tutorial.html#tutorial

Birdhouse Documentation, Release 0.7.0

Warning: This section needs is outdated and needs to be rewritten!

Set up a birdhouse ecosystem server

If you are already familiar with installing single standalone WPS (follow the installation guides in the documentations
of e.g. emu), then you are ready to set up a birdhouse containing flyingpigeon (providing scientific analyses methods),
malleefow] (to search and fetch data) and the pheonix (a graphic interface for a web browser including a WMS).

General Remarks

Check the Requirements of your system!
The installation is done as normal user, root rights are causing conflicts.

Prepare Installation

It is recommended to collect the repositories in a separate folder (e.g. birdhouse, but can have a name of your choice):

$ mkdir birdhouse
$ cd birdhouse

Get the source code from GitHub

$ git clone https://github.com/bird-house/flyingpigeon.git
$ git clone https://github.com/bird-house/pyramid-phoenix.git
$ git clone https://github.com/bird-house/malleefowl.git

Run Installation

You can run the installation with default settings. It will create a conda environment and deploy all required software
dependencies there.

Note: Read the changing the default configuration if you want to customize the configuration.

In all of the tree folders (malleefowl, flyingpigeon and pyramid-phoenix) run:

$ make install

This installation will take some minutes to fetch all dependencies and install them into separate conda environments.

4.9. Server administration 143

Birdhouse Documentation, Release 0.7.0

Start the Services

in all of the birds run:

$ make start

Launching the Phoenix Web App

If the services are running, you can launch the GUI in a common web browser. By default, phoenix is set to port 8081:

’firefox http://localhost:8081 ‘

or:

’firefox https://localhost:8443/ ‘

Now you can log in (upper right corner) with your Phoenix password created previously. Phoenix is just a graphical
interface with no more function than looking nice ;-).

Register a service in Phoenix Web App

Note: Please read the Phoenix documentation

Your first administration step is to register flyingpigeon as a service. For that, log in with your phoenix password. In
the upper right corner is a tool symbol to open the settings. Click on Services and the Register a Service.

Flyingpigeon is per default on port 8093.

The appropriate url is:

http://localhost:8093/wps

Provide service title and name as you like: * Service Title: Flyingpigeon * Service Name: flyingpigeon
check Service Type: Web Processing Service (default) and register.

Optionally, you can check Public access?, to allow unregistered users to launch jobs. (NOT recommended)

Launching a Job

Now your birdhouse ecosysem is set up. The also installed malleefowl is already running in the background and will
do a lot of work silently. There is no need to register malleefowl manually!

Launching a job can be performed as a process (Process menu) or with the wizard. To get familliar with the processes
provided by each of the birds, read the approriate documentation for each of the services listed in the overview:

144 Chapter 4. Tutorials

https://pyramid-phoenix.readthedocs.io/en/latest/user_guide.html
http://birdhouse.readthedocs.io/en/latest/index.html

Birdhouse Documentation, Release 0.7.0

Changing the default configuration

You can customize the configuration of the service. Please read the documentation, for example:
* Phoenix documentation
* Flyingpigeon documentation

Furthermore, you might change the hostname (to make your service accessible from outside), ESGF-node connec-
tion, the port or the log-level for more/less information in the administrator logfiles. Here is an example pyramid-
phoenix/custom.cfg:

[settings]

hostname = localhost

http-port = 8081

https-port = 8443

log—-level = DEBUG

run 'make passwd' and to generate password hash
phoenix-password = sha256:513....

generate secret

python —-c "import os; print(''.join('%02x' % ord(x) for x in os.urandom(16)))"
phoenix—-secret = dbe8417....30

esgf-search-url = https://esgf-data.dkrz.de/esg-search
wps-url = http://localhost:8091/wps

Update Phoenix Password

To be able to log into the Phoenix GUI once the services are running, it is necessary to generate a password: go into
the pyramid-phoenix folder and run:

$ make passwd

This will automatically write a password hash into pyramid-phoenix/custom.cfg

Backups

See the mongodb documentation on how to backup the database. With the following command you can make a dump
of the users collection of the Phoenix database:

$ mongodump —--port 27027 --db phoenix_db --collection users

Asking for Support

In case of questions or trouble shooting, feel welcome to join the birdhouse chat and get into contact with the devel-
opers directly.

4.9. Server administration 145

https://pyramid-phoenix.readthedocs.io/en/latest/configuration.html
https://flyingpigeon.readthedocs.io/en/latest/configuration.html
https://docs.mongodb.com/manual/core/backups/
https://gitter.im/bird-house/birdhouse

Birdhouse Documentation, Release 0.7.0

4.10 PyWPS with R

The following shows how you can wrap R software with PyWPS.

4.10.1 Examples of R Birds

* pcic/quail
— wps_climdex_gsl.py
* pcic/chickadee

- wps_BCCAQ.py

4.10.2 Rpy2

There’s several R-to-python Python libraries but Rpy?2 is probably the most well documented and most frequently
used. As long as it is installed, a R library can be accessed with importr ([package—name]). Since R base
and utils are installed with rpy2 you can import them:

from rpy2.robjects.packages import importr
base = importr ("base")
utils = importr ("utils")

Then you can use functions from that package with package. function_name (). If the R function name has a
period . it is replaced with an underscore __ in python.

base.all (True)
base.all_equal ("hello", "world") # all.equal() in R

You can execute any regular R code as a string passed to robjects.r ()

from rpy2 import robjects
count = robjects.r("c(1,2,3)")
robjects.r("all(T)")

You can also access R functions with the syntax robjects.r["function.name"] if you want to avoid the
import step.

robjects.r["save"] (count, file=output_path)

Install another package with Rpy2 and use the functions form that package. ..

utils.install_packages ("climdex.pcic")
climdex_pcic = importr("climdex.pcic")
climdex_pcic.climdex_gsl (climdexInput, gsl_mode)

146 Chapter 4. Tutorials

https://github.com/pacificclimate/quail
https://github.com/pacificclimate/quail/blob/master/quail/processes/wps_climdex_gsl.py
https://github.com/pacificclimate/chickadee
https://github.com/pacificclimate/chickadee/blob/master/chickadee/processes/wps_BCCAQ.py
https://rpy2.github.io/doc/latest/html/index.html

Birdhouse Documentation, Release 0.7.0

4.10.3 1/0

Rpy?2 handles R-to-python conversions of LITERAL_DATA_TYPES, but objects of other types may need to be stored
in a RDS or Rdata file. RDS files and Rdata files are indistinguishable by mime type when read to the server so their
handling has to be done elsewhere in the processes. You can see how it’s handled in PCIC’s quail. Read the file as a
ComplexInput with format:

from pywps import ComplexInput, Format

ComplexInput (
"r_file",
"R data file",
supported_formats=[Format ("application/x-gzip", encoding="base6d")],

And if your output is an R object you can save that object to an RDS or Rdata file and return it with
ComplexOutput:

from pywps import ComplexOutput

ComplexOutput (

"r_output",

"R output file",

supported_formats=[Format ("application/x-gzip", extension=".rda", encoding="base64
‘—)")]I

)

4.10.4 Installing Dependencies

You can write a simple script in R, bash, or Python to automate installation of R package dependencies.
devtools::install_version () is used to pin versions in PCIC’s quail and chickadee. You can take
a look at the R script here.

The script reads from a file similar to requirements. txt for Python dependencies:

r_requirements.txt:

PCICt==0.5.4.1
climdex.pcic==1.1.11

4.10.5 Dockerfile

To install Rpy2, R needs to be installed already. A good base image for R is rocker/r-ver and you can install Python
on top of it. Check out the pcic/quail Dockerfile as an example.

4.10. PyWPS with R 147

https://pywps.readthedocs.io/en/latest/api.html#pywps.inout.literaltypes.LITERAL_DATA_TYPES
https://github.com/pacificclimate/quail/blob/6f89a3f2d2d7effb2ee22bb7e6a8ae1a74c6e6cc/quail/utils.py#L91
https://github.com/pacificclimate/quail/blob/cd60aabcfdcae249921541f6e969de26a2695127/install_pkgs.R
https://hub.docker.com/r/rocker/r-ver
https://github.com/pacificclimate/quail/blob/master/Dockerfile

Birdhouse Documentation, Release 0.7.0

148 Chapter 4. Tutorials

CHAPTER
FIVE

PUBLICATIONS

e Talks and articles

* References

5.1 Talks and articles

Articles, book sections and conference proceedings and presentations related to the birdhouse projects:
2019:

* WPS Deployment at CORDEX Copernicus Workshop, Copenhagen

* UN GIS Initiative Workshop at FOSS4G Bucharest

* Birdhouse in ISPRS photogrammetry and remote-sensing [ELH+18]

* FOSS4G 2018 in Dar-Es-Salaam

* Open Climate GIS and Birdhouse at Pangeo Developer Workshop, 2018
* IGARSS 2018

* D-GEO Days, 2018

* GIZ Fachtagung, 2018

* Copernicus/Birdhouse at EGU 2018, Vienna

* Flyingpigeon in Computes and Geosciences, January 2018 [HEAC+18]

* Birdhouse in LSDMA book, 2017 [JMS17]
¢ UNCCC Subgroup 2017 in Kigali

* AGU 2016 in San Francisco

* ESGF F2F 2016 in Washington

* FOSS4G 2016 in Bonn

* EGI Workshop 2016 in Amsterdam

149

https://github.com/cehbrecht/wps-talk-copernicus-cordex-dmi-meeting-2019/blob/master/WPS-Deployment-Talk.pdf
https://github.com/nilshempelmann/presentations/raw/master/birdhouse-foss4g-2019/Hempelmann_foss4g2019.pdf
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W8/43/2018/
https://github.com/nilshempelmann/presentations/blob/master/birdhouse-foss4g-2018/Hempelmann_foss4g2018.pdf
https://medium.com/pangeo/the-2018-pangeo-developers-workshop-1be359dac33c
https://www.igarss2018.org/Papers/viewpapers.asp?papernum=3632
https://github.com/nilshempelmann/presentations/blob/master/birdhouse-D-GEO/main.pdf
https://github.com/nilshempelmann/presentations/blob/master/birdhouse-fata2018/main.pdf
https://presentations.copernicus.org/EGU2018-6491_presentation.pdf
https://publikationen.bibliothek.kit.edu/1000071931
https://github.com/nilshempelmann/presentations/blob/master/birdhouse-UNFCCC/CCNUCC_Kigali2017.pdf
http://www.crim.ca/media/publication/fulltext/agu2016_presentation_short_ouranos.pdf
https://github.com/cehbrecht/birdhouse-esgf-f2f-2016/blob/master/birdhouse-esgf-f2f-2016_dkrz.pdf
https://github.com/nilshempelmann/presentations/blob/master/birdhouse-foss4g-2016/Hempelmann_foss4g2016.pdf
https://github.com/cehbrecht/birdhouse-talk-egi-2016/blob/master/birdhouse-talk-egi-2016.pdf

Birdhouse Documentation, Release 0.7.0

EGU 2016 in Vienna
ICRC-CORDEX 2016

* Model Animation LSCE

Talk on USGS WebEx 2016/02/18

2015:

e Paris Coding Spring 2015 at IPSL
2014:

e EGI Community Forum 2014 at Helsinki

e Prag

» Optimization of data life cycles [JGG+14]
2013:

* Gerics Hamburg User-Developer Workshop

5.2 References

150

Chapter 5. Publications

https://github.com/cehbrecht/birdhouse-talk-egu-2016/blob/master/EGU-Processing-DKRZ.pdf
https://github.com/nilshempelmann/presentations/blob/master/Hempelmann_CORDEX2016_datatoinformation.pdf
https://my.usgs.gov/confluence/pages/viewpage.action?pageId=542482181
https://github.com/cehbrecht/birdhouse-talk-coding-sprint-ipsl-2015/blob/master/birdhouse-architecture.pdf
https://indico.egi.eu/indico/event/1994/session/23/contribution/134

CHAPTER
SIX

PROJECT EXAMPLES

* PAVICS
* COPERNICUS

e OGC-Testbeds

The birdhouse framework is modular organized to enable a flexible architecture design depending on the projects
needs. Due to the OCG Standard, software components non-birdhouse components can be combined for interoper-
ability. Here are some examples of real projects to show the flexibility and potential of the birdhouse framework.

6.1 PAVICS

* PAVICS: Platform for climate analysis and visualization by Ouranos and CRIM, Canada.

* PAVICS-Hydro : Additional services for PAVICS allowing users to perform hydrological modeling and analysis.

151

https://ouranosinc.github.io/pavics-sdi/
https://www.ouranos.ca/
https://www.crim.ca/en
https://medium.com/birdhouse-newsletter/web-processing-services-for-hydrological-modeling-7b5eb5c426ed
https://ouranosinc.github.io/pavics-sdi/

Birdhouse Documentation, Release

0.7.0

6.1.1 Backend - PAVICS Node

<creates project
assigns permissions,
sets system parameters
monitor system health,
——, Manages services
access data>

R h i -CRIM
Cloud, Compute

Canada cloud

professional

Research platform - Ouranos baremetal, CANARIE DAIR, CRIM Cloud

Advanced workflow tools

Data semantic and
ontology tools

)

{Workﬂnw munimr} [V\sual workflow Dullder] [

PAVICS collaborative and admin tools
Application Monitoring
management [J and logs SELRE
PAVICS Earth sciences tools

JupyterLab Catchment Hydrological tools
ESirrs notebooks delineation tools and applications

Collaborative
projects

Smart Data -
Ouranos
baremetal

Waorkflows CANARIE DAIR,

CRIM Cloud

Metadata {—

Logs

Data access -
On all sites as required

<inspect service

S8L tran:
Permissions and
authorizations

build workflows:

ﬁ

OGC Web Services (OWS) - Ouranos baremetal, CRIM Cloud

Cmmge server Process server Feature server
wes) s sener (s [PIOCEE e | wFs)

OPENDAP
server
SOLR
catalog

Secured proxy

- Ouranos barem
Hybrid elastic cloud node

al, Compute Canada, CRIM Cloud (load balanced)

HPC scheduling
] [EENEEIIED] (SLURM, TORQUE)

Crawlers and
harvesters
NFS Mounts

Hydrologist
Token-based
— authentication —
o etebocn, RIS (o0
balancer
search data

(view maps and araphs=

Power user

New component propoesed
in PAVICS

New component, unused, H

proposed by other groups :

Reused or adapted, i
‘existing in PAVICS

Services - Compute
Canada cloud
CANARIE DAIR, CRIM
Cloud, private
commercial cloud

o

(OpenStack, VMWare, AWS)
Services % v
Earth systems services

- Wind related o Climate
Interpolations Mj Spatial Analogs lﬁg%]
GIs Workdlow " Climate indices and
operators runner et scenarios
Hydrological models - | [Digital Elevation Models -
RAVEN framework HydroSHEDS

Hydro indicators and
frequential analysis

Machine Leaming Earth Observation o
services data support (T

[WF’S Client generalur] [] [Hydrological models]

=

Big Data -

Compute Canada
— Quranos

| baremetal, CRIM

Cloud

WModel outputs

Earth Observation

PAVICS nodes are data, compute and index endpoints accessed through the PAVICS platform or external clients.
The Node service is the backend that provides data storage, metadata harvesting, indexation and discovery of local
and federated data, user authentication and authorization, server registration and management. The node service is
therefore composed of several services that are briefly described below, accompanied by links to the full documentation

of each individual building block.

The backend of PAVICS-SDI is built entirely with Free and Open Source Software. All of the backend projects (source

W

ComputeCanada
clusters

code and documentation) are open to be inspected, built upon, or contributed to.

Data storage

Data is stored on two different servers: THREDDS for gridded netCDF data, and GeoServer for GIS features (region

polygons, river networks).

THREDDS The Thematic Real-time Environmental Distributed Data Services (THREDDS) is a server system for
providing scientific data and metadata access through various online protocols. The PAVICS platform relies on
THREDDS to provide access to all netCDF data archives, as well as output files created by processes. The code
is hosted on this GitHub repository. THREDDS support direct file access as well as the OPeNDAP protocol,
which allows the netCDF library to access segments of the hosted data without downloading the entire file.
Links to files archived on THREDDS are thus used as inputs to WPS processes. File content cannot however be

directly displayed by the frontend and require an intermediary (see ncWMS).

GeoServer GeoServer is an OGC compliant server system built for viewing, editing, and presenting geospatial data.
PAVICS uses GeoServer as its database for vector geospatial information, such as administrative regions, water-
sheds and river networks. The frontend sends requests for layers that can be overlayed on the map canvas. See

the GeoServer documentation for more information on its capabilities.

152

Chapter 6. Project examples

https://www.unidata.ucar.edu/software/thredds/current/tds/
https://github.com/Unidata/thredds
http://geoserver.org/about/
http://docs.geoserver.org/

Birdhouse Documentation, Release 0.7.0

Indexation

Although information about file content is stored in the netCDF metadata fields, accessing and reading those fields
one by one takes a considerable amount of time. The strategies used here mimic those used by ESGF, and comprises
running a crawler over all netCDF files hosted on THREDDS, extracting relevant metadata and storing them in a
SOLR database. Search queries are thus directed at SOLR, which returns a list of links matching the search terms.
The crawler is part of the PAVICS-DataCatalog library.

SOLR SOLR is a search platform part of the Apache Lucene project. It is used in this project for its faceted search
capability. Search queries are relayed from the UI or WPS processes to the SOLR database, which returns a
json file with the links to matching files.

PAVICS-DataCatalog PAVICS-DataCatalog is a database system for storing and serving information about available
climate data.

Climate Analytic Processes with Birdhouse

The climate computing aspect of PAVICS is largely built upon the many components developed as part of the Bird-
house Project. The goal of Birdhouse is to develop a collection of easy-to-use Web Processing Service (WPS) servers
providing climate analytic algorithms. Birdhouse servers are called ‘birds’, each one offering a set of individual
processes:

Birdhouse/Finch Provides access to a large suite of climate indicators, largely inspired by "ICCLIM"_. Finch Offi-
cial Documentation

Raven Provides hydrological modeling capability using the Raven framework, along with model calibration utilities,
regionalization tools, hydrological indicators and frequency analysis.

Birdhouse/Malleefowl Provides processes to access ESGF data nodes and THREDDS catalogs, as well as a workflow
engine to string different processes together. Malleefowl Official Documentation

Birdhouse/Flyingpigeon Provides a wide array of climate services including indices computation, spatial analogs,
weather analogs, species distribution model, subsetting and averaging, climate fact sheets, etc. FlyingPigeon is
the sand box for emerging services, which eventually will make their way to more stable and specialized birds.
Flyingpigeon Official Documentation

Birdhouse/Hummingbird Provides access to climate Data Operators (CDO) functions and compliance-checker for
netCDF files. Hummingbird Official Documentation

Virtually all individual processes ingest and return netCDF files (or OPeNDAP links), such that one process’ output
can be used as the input of another process. This lets scientist create complex workflows. By insisting that process
inputs and outputs comply with the CF-Convention, we make sure that data is accompanied by clear and unambiguous
metadata.

Authentication and authorization

Access to files and services is controlled by a security proxy called “Twitcher"_, also part of Birdhouse. Upon login,
the proxy issues access tokens that allow users to access services behind the proxy. CRIM developed a Twitcher
extension called Magpie that provides a higher level of granularity for service access.

Twitcher Proxy service issuing access tokens necessary to run WPS processes or any other OWS service.

Magpie Manages user/group/resource permissions for services behind Twitcher.

6.1. PAVICS 153

http://lucene.apache.org/solr/
https://github.com/Ouranosinc/PAVICS-DataCatalog
http://lucene.apache.org/solr/
https://github.com/Ouranosinc/PAVICS-DataCatalog
https://github.com/bird-house/birdhouse-docs/blob/master/slides/birdhouse-architecture/birdhouse-architecture.pdf
https://github.com/bird-house/birdhouse-docs/blob/master/slides/birdhouse-architecture/birdhouse-architecture.pdf
https://finch.readthedocs.io/en/latest/
https://finch.readthedocs.io/en/latest/
http://raven.uwaterloo.ca/
https://malleefowl.readthedocs.io/en/latest/
https://flyingpigeon.readthedocs.io/en/latest/
https://code.mpimet.mpg.de/projects/cdo/
https://birdhouse-hummingbird.readthedocs.io/en/latest/
https://github.com/Ouranosinc/Magpie

Birdhouse Documentation, Release 0.7.0

Gridded data visualization

The UI can display 2D netCDF fields by making a request to a ncWMS server. The UI will specify which time step
of which file to map, and ncWMS will fetch the data from the THREDDS server, then convert the array into an image
embedded into a WMS response. This conversion requires a mapping of numerical value to a color scale: a colormap
and min/max values. The colormap is defined by the user through the Ul, while default min/max values are stored in
our SOLR database by the metadata crawler. Users may also specify min/max values directly within the UL

ncWMS ncWMS is an implementation of the OGC’s Web Mapping Service (WMS) specifically built for multidi-
mensional gridded data such as the netCDF format. The PAVICS platform uses it to convert gridded netCDF
data layers from a file or an OPeNDAP link to an image that can be accessed through WMS GetMap requests.
See this reference paper for more information.

6.1.2 Backend - PAVICS Node

images/PAVI(S_architecture.png

PAVICS nodes are data, compute and index endpoints accessed through the PAVICS platform or external clients.
The Node service is the backend that provides data storage, metadata harvesting, indexation and discovery of local
and federated data, user authentication and authorization, server registration and management. The node service is
therefore composed of several services that are briefly described below, accompanied by links to the full documentation
of each individual building block.

The backend of PAVICS-SDI is built entirely with Free and Open Source Software. All of the backend projects (source
code and documentation) are open to be inspected, built upon, or contributed to.

Data storage

Data is stored on two different servers: THREDDS for gridded netCDF data, and GeoServer for GIS features (region
polygons, river networks).

THREDDS The Thematic Real-time Environmental Distributed Data Services (THREDDS) is a server system for
providing scientific data and metadata access through various online protocols. The PAVICS platform relies on
THREDDS to provide access to all netCDF data archives, as well as output files created by processes. The code
is hosted on this GitHub repository. THREDDS support direct file access as well as the OPeNDAP protocol,
which allows the netCDF library to access segments of the hosted data without downloading the entire file.
Links to files archived on THREDDS are thus used as inputs to WPS processes. File content cannot however be
directly displayed by the frontend and require an intermediary (see ncWMS).

GeoServer GeoServer is an OGC compliant server system built for viewing, editing, and presenting geospatial data.
PAVICS uses GeoServer as its database for vector geospatial information, such as administrative regions, water-
sheds and river networks. The frontend sends requests for layers that can be overlayed on the map canvas. See
the GeoServer documentation for more information on its capabilities.

154 Chapter 6. Project examples

https://reading-escience-centre.github.io/ncwms/
https://reading-escience-centre.github.io/ncwms/
http://lucene.apache.org/solr/
https://reading-escience-centre.github.io/ncwms/
https://doi.org/10.1016/j.envsoft.2013.04.002
https://www.unidata.ucar.edu/software/thredds/current/tds/
https://github.com/Unidata/thredds
http://geoserver.org/about/
http://docs.geoserver.org/

Birdhouse Documentation, Release 0.7.0

Indexation

Although information about file content is stored in the netCDF metadata fields, accessing and reading those fields
one by one takes a considerable amount of time. The strategies used here mimic those used by ESGF, and comprises
running a crawler over all netCDF files hosted on THREDDS, extracting relevant metadata and storing them in a
SOLR database. Search queries are thus directed at SOLR, which returns a list of links matching the search terms.
The crawler is part of the PAVICS-DataCatalog library.

SOLR SOLR is a search platform part of the Apache Lucene project. It is used in this project for its faceted search
capability. Search queries are relayed from the UI or WPS processes to the SOLR database, which returns a
json file with the links to matching files.

PAVICS-DataCatalog PAVICS-DataCatalog is a database system for storing and serving information about available
climate data.

Climate Analytic Processes with Birdhouse

The climate computing aspect of PAVICS is largely built upon the many components developed as part of the Bird-
house Project. The goal of Birdhouse is to develop a collection of easy-to-use Web Processing Service (WPS) servers
providing climate analytic algorithms. Birdhouse servers are called ‘birds’, each one offering a set of individual
processes:

Birdhouse/Finch Provides access to a large suite of climate indicators, largely inspired by "ICCLIM"_. Finch Offi-
cial Documentation

Raven Provides hydrological modeling capability using the Raven framework, along with model calibration utilities,
regionalization tools, hydrological indicators and frequency analysis.

Birdhouse/Malleefowl Provides processes to access ESGF data nodes and THREDDS catalogs, as well as a workflow
engine to string different processes together. Malleefowl Official Documentation

Birdhouse/Flyingpigeon Provides a wide array of climate services including indices computation, spatial analogs,
weather analogs, species distribution model, subsetting and averaging, climate fact sheets, etc. FlyingPigeon is
the sand box for emerging services, which eventually will make their way to more stable and specialized birds.
Flyingpigeon Official Documentation

Birdhouse/Hummingbird Provides access to climate Data Operators (CDO) functions and compliance-checker for
netCDF files. Hummingbird Official Documentation

Virtually all individual processes ingest and return netCDF files (or OPeNDAP links), such that one process’ output
can be used as the input of another process. This lets scientist create complex workflows. By insisting that process
inputs and outputs comply with the CF-Convention, we make sure that data is accompanied by clear and unambiguous
metadata.

Authentication and authorization

Access to files and services is controlled by a security proxy called “Twitcher"_, also part of Birdhouse. Upon login,
the proxy issues access tokens that allow users to access services behind the proxy. CRIM developed a Twitcher
extension called Magpie that provides a higher level of granularity for service access.

Twitcher Proxy service issuing access tokens necessary to run WPS processes or any other OWS service.

Magpie Manages user/group/resource permissions for services behind Twitcher.

6.1. PAVICS 155

http://lucene.apache.org/solr/
https://github.com/Ouranosinc/PAVICS-DataCatalog
http://lucene.apache.org/solr/
https://github.com/Ouranosinc/PAVICS-DataCatalog
https://github.com/bird-house/birdhouse-docs/blob/master/slides/birdhouse-architecture/birdhouse-architecture.pdf
https://github.com/bird-house/birdhouse-docs/blob/master/slides/birdhouse-architecture/birdhouse-architecture.pdf
https://finch.readthedocs.io/en/latest/
https://finch.readthedocs.io/en/latest/
http://raven.uwaterloo.ca/
https://malleefowl.readthedocs.io/en/latest/
https://flyingpigeon.readthedocs.io/en/latest/
https://code.mpimet.mpg.de/projects/cdo/
https://birdhouse-hummingbird.readthedocs.io/en/latest/
https://github.com/Ouranosinc/Magpie

Birdhouse Documentation, Release 0.7.0

Gridded data visualization

The UI can display 2D netCDF fields by making a request to a ncWMS server. The UI will specify which time step
of which file to map, and ncWMS will fetch the data from the THREDDS server, then convert the array into an image
embedded into a WMS response. This conversion requires a mapping of numerical value to a color scale: a colormap
and min/max values. The colormap is defined by the user through the UI, while default min/max values are stored in
our SOLR database by the metadata crawler. Users may also specify min/max values directly within the UL

ncWMS ncWMS is an implementation of the OGC’s Web Mapping Service (WMS) specifically built for multidi-
mensional gridded data such as the netCDF format. The PAVICS platform uses it to convert gridded netCDF
data layers from a file or an OPeNDAP link to an image that can be accessed through WMS GetMap requests.
See this reference paper for more information.

6.2 COPERNICUS

* CP4CDS: Climate Projects for the Climate Data Store (part of the European Union’s Copernicus Climate Change
Service).

6.3 OGC-Testbeds

Todo: Add references to OGC testbed.

* OGC Testbed 13: Enhancement of scheduling services

* OGC Testbed 14: Enhancement of security

156 Chapter 6. Project examples

https://reading-escience-centre.github.io/ncwms/
https://reading-escience-centre.github.io/ncwms/
http://lucene.apache.org/solr/
https://reading-escience-centre.github.io/ncwms/
https://doi.org/10.1016/j.envsoft.2013.04.002
https://cds.climate.copernicus.eu/
https://climate.copernicus.eu/
https://climate.copernicus.eu/

CHAPTER
SEVEN

IDEAS

In this section we are collection ideas how we could improve our coding and design in the Birdhouse/WPS context.

7.1 PyWPS Profiles

* Motivation
* Python Mixins

* Python Decorators

o Simple Alternative: Shared Profile Module/Class

Warning: Work in progress.

7.1.1 Motivation

It happens quite often that we have a set of processes with common input (and output) parameters. In WPS the process
signature (inputs+outputs) is called a WPS profile. In the following we show examples how to avoid copy+paste of
these process parameters.

7.1.2 Python Mixins

One could use Python mixin classes to define a commonly used profile which can be adapted by each individual
process.

See how a mixin class looks like:
https://www.ianlewis.org/en/mixins-and-python
See notebook examples how it could be used with PyWPS:

https://nbviewer.jupyter.org/github/bird-house/notebooks/blob/master/pywps- profiles/notebooks/process_mixin.
ipynb

157

http://geoprocessing.info/wpsdoc/FAQ#profile
https://www.ianlewis.org/en/mixins-and-python
https://nbviewer.jupyter.org/github/bird-house/notebooks/blob/master/pywps-profiles/notebooks/process_mixin.ipynb
https://nbviewer.jupyter.org/github/bird-house/notebooks/blob/master/pywps-profiles/notebooks/process_mixin.ipynb

Birdhouse Documentation, Release 0.7.0

7.1.3 Python Decorators

We can also use function decorator to define a WPS profile for PyWPS.
See how a function decorator looks like:
https://krzysztofzuraw.com/blog/2016/python-class-decorators.html
Here are some notebook examples how it could be used with PyWPS:

* notebooks: https://nbviewer.jupyter.org/github/bird-house/notebooks/blob/master/pywps-profiles/notebooks/
process_decorator.ipynb

e Emu subset with ESGF-API: https://github.com/bird-house/emu/blob/esgfwps/emu/processes/wps_esgf
subset.py

7.1.4 Simple Alternative: Shared Profile Module/Class

Relatively few developers will be familiar with the concepts of mixins and decorators. In other words, it might look
a bit too much like magic. We could also simply create a module with all the common inputs and outputs used
throughout the different WPS processes (wpsio.py). For a given Process definition, one then just import wpsio and
refer to the objects in the inputs and outputs fields of the Process.init method.

See for example:
https://github.com/Ouranosinc/raven/blob/master/raven/processes/wps_regionalisation.py
Here is a notebook showing this approach which includes also an optional decorator:

https://nbviewer.jupyter.org/github/bird-house/notebooks/blob/master/pywps-profiles/notebooks/process_simple_
profile_and_decorator.ipynb

158 Chapter 7. Ideas

https://krzysztofzuraw.com/blog/2016/python-class-decorators.html
https://nbviewer.jupyter.org/github/bird-house/notebooks/blob/master/pywps-profiles/notebooks/process_decorator.ipynb
https://nbviewer.jupyter.org/github/bird-house/notebooks/blob/master/pywps-profiles/notebooks/process_decorator.ipynb
https://github.com/bird-house/emu/blob/esgfwps/emu/processes/wps_esgf_subset.py
https://github.com/bird-house/emu/blob/esgfwps/emu/processes/wps_esgf_subset.py
https://github.com/Ouranosinc/raven/blob/master/raven/processes/wps_regionalisation.py
https://nbviewer.jupyter.org/github/bird-house/notebooks/blob/master/pywps-profiles/notebooks/process_simple_profile_and_decorator.ipynb
https://nbviewer.jupyter.org/github/bird-house/notebooks/blob/master/pywps-profiles/notebooks/process_simple_profile_and_decorator.ipynb

CHAPTER
EIGHT

RELEASE NOTES

* Niamey (October 2020, v0.10.0)

* Oxford (April 2020, v0.9.0)

* Bucharest (October 2019, v0.8.0)

» San Francisco (May 2019, v0.7.0)

» Washington (December 2018, v0.6.1)
* Dar es Salaam (September 2018, v0.6.0)
* Montréal (March 2018, v0.5.0)

* Bonn (August 2016, v0.4.0)

e Paris (October 2015, v0.3.0)

* Paris (September 2014, v0.2.0)

* Helsinki (May 2014, v0.1.2)

* Vienna (April 2014, v0.1.1)

* Hamburg (December 2013, v0.1.0)

8.1 Niamey (October 2020, v0.10.0)

Highlighted Changes:
» Updated FlyingPigeon WPS with improved plot and subset processes.
* Improved cookiecutter template for PyWPS with cruft update.
* Ansible PyWPS playbook with support for Slurm cluster.
Released Tools:
» Twitcher WPS Proxy: 0.6.0
* Ansible Playbook for PyWPS 0.4.0
* Ansible Playbook for Twitcher 0.1.0
* Cookiecutter Template for PyWPS 0.5.0
Birdy WPS Client: 0.6.9

159

https://github.com/bird-house/twitcher/releases/tag/v0.6.0
https://github.com/bird-house/ansible-wps-playbook/releases/tag/v0.4.0
https://github.com/bird-house/ansible-twitcher-playbook/releases/tag/v0.1.0
https://github.com/bird-house/cookiecutter-birdhouse/releases/tag/v0.5.0
https://github.com/bird-house/birdy/releases/tag/v0.6.9

Birdhouse Documentation, Release 0.7.0

Released WPS services:
* Emu WPS: 0.12.0
* FlyingPigeon WPS: 1.6.0
e Finch WPS: 0.5.3
* Hummingbird WPS: 0.9.0
Maintained Apps with Buildout:
¢ Phoenix Web App: 0.11.0

8.2 Oxford (April 2020, v0.9.0)

Highlighted Changes:

» Keycloak support in Twitcher and Phoenix.

Released Tools:

* Twitcher WPS Proxy: 0.6.0

* Ansible Playbook for PyWPS 0.3.0

* Ansible Playbook for Twitcher 0.1.0

» Cookiecutter Template for PyWPS 0.4.2

¢ Birdy WPS Client: 0.6.9
Released WPS services:

e Emu WPS: 0.11.1

* FlyingPigeon WPS: 1.5.1

* Finch WPS: 0.5.1

* Hummingbird WPS: 0.9.0
Maintained Apps with Buildout:

* Phoenix Web App: 0.11.0

8.3 Bucharest (October 2019, v0.8.0)

PyWPS was present at FOSS4G 2019 in Bucharest.

Highlighted Changes:

 Skipped buildout in Twitcher.

* Skipped conda handling in Makefile.

* Working on OAuth support in Twitcher and birdy.

* Released OWSLib extension for ESGF compute API.

Released Birds:

e Twitcher WPS Proxy: 0.5.2
* Ansible Playbook for PyWPS 0.2.2

160

Chapter 8. Release Notes

https://github.com/bird-house/emu/releases/tag/v0.12.0
https://github.com/bird-house/flyingpigeon/tree/v1.6
https://github.com/bird-house/finch/releases/tag/v0.5.3
https://github.com/bird-house/hummingbird/releases/tag/v0.9.0
https://github.com/bird-house/pyramid-phoenix/releases/tag/v0.11.0
https://github.com/bird-house/twitcher/releases/tag/v0.6.0
https://github.com/bird-house/ansible-wps-playbook/releases/tag/v0.3.0
https://github.com/bird-house/ansible-twitcher-playbook/releases/tag/v0.1.0
https://github.com/bird-house/cookiecutter-birdhouse/releases/tag/v0.4.2
https://github.com/bird-house/birdy/releases/tag/v0.6.9
https://github.com/bird-house/emu/releases/tag/v0.11.1
https://github.com/bird-house/flyingpigeon/releases/tag/v1.5.1
https://github.com/bird-house/finch/releases/tag/v0.5.1
https://github.com/bird-house/hummingbird/releases/tag/v0.9.0
https://github.com/bird-house/pyramid-phoenix/releases/tag/v0.11.0
https://2019.foss4g.org/
https://github.com/bird-house/twitcher/releases/tag/v0.5.2
https://github.com/bird-house/ansible-wps-playbook/releases/tag/v0.2.2

Birdhouse Documentation, Release 0.7.0

* Cookiecutter Template for PyWPS 0.4.1
* Birdy WPS Client: 0.6.5
* Emu WPS: 0.11.0
* FlyingPigeon WPS: 1.5
* Finch WPS: 0.2.5
* Hummingbird WPS: 0.8.0
* Malleefowl WPS: 0.9.0
* OWSLIib extension for ESGF: 0.2.0
Maintained Birds with Buildout:
* Phoenix Web App: 0.10.0
New Birds in the making:
* Kingfisher: https://github.com/bird-house/kingfisher
* Black Swan: https://github.com/bird-house/blackswan
* Eggshell: https://github.com/bird-house/eggshell

* Pelican: https://github.com/bird-house/pelican

8.4 San Francisco (May 2019, v0.7.0)

Highlighted Changes:
* All released birds support only Python >3.6.
* Support for the ESGF WPS profile with a Pelican WPS demo and an OWSLib extension.
* Support for MetaLink in Birdy and PyWPS to return multiple files as WPS output.
¢ Release of Finch, a WPS for climate indicators.
Released Birds:
* Ansible Playbook for PyWPS 0.2.1
* Cookiecutter Template for PyWPS 0.4.0
* Birdy WPS Client: 0.6.0
e Emu WPS: 0.10.0
* FlyingPigeon WPS: 1.4.1
* Finch WPS: 0.2.0
* Hummingbird WPS: 0.7.0
¢ Malleefowl WPS: 0.8.0
Maintained Birds with Buildout:
* Phoenix Web App: 0.9.0
» Twitcher WPS Proxy: 0.4.0

New Birds in the making:

8.4. San Francisco (May 2019, v0.7.0) 161

https://github.com/bird-house/cookiecutter-birdhouse/releases/tag/v0.4.1
https://github.com/bird-house/birdy/releases/tag/v0.6.5
https://github.com/bird-house/emu/releases/tag/v0.11.0
https://github.com/bird-house/flyingpigeon/releases/tag/v1.5
https://github.com/bird-house/finch/releases/tag/v0.2.5
https://github.com/bird-house/hummingbird/releases/tag/v0.8.0
https://github.com/bird-house/malleefowl/releases/tag/v0.9.0
https://github.com/bird-house/OWSLib-esgfwps/releases/tag/v0.2.0
https://github.com/bird-house/pyramid-phoenix/releases/tag/v0.10.0
https://github.com/bird-house/kingfisher
https://github.com/bird-house/blackswan
https://github.com/bird-house/eggshell
https://github.com/bird-house/pelican
https://github.com/ESGF/esgf-compute-api
https://pywps.readthedocs.io/en/latest/process.html#returning-multiple-files
https://finch.readthedocs.io/en/latest/
https://github.com/bird-house/ansible-wps-playbook/releases/tag/v0.2.1
https://github.com/bird-house/cookiecutter-birdhouse/releases/tag/v0.4.0
https://github.com/bird-house/birdy/releases/tag/v0.6.0
https://github.com/bird-house/emu/releases/tag/v0.10.0
https://github.com/bird-house/flyingpigeon/releases/tag/v1.4.1
https://github.com/bird-house/finch/releases/tag/v0.2
https://github.com/bird-house/hummingbird/releases/tag/v0.7.0
https://github.com/bird-house/malleefowl/releases/tag/v0.8.0
https://github.com/bird-house/pyramid-phoenix/releases/tag/v0.9.0
https://github.com/bird-house/twitcher/releases/tag/v0.4.0

Birdhouse Documentation, Release 0.7.0

* Kingfisher: https://github.com/bird-house/kingfisher

* Black Swan: https://github.com/bird-house/blackswan

Eggshell: https://github.com/bird-house/eggshell

e Pelican: https://github.com/bird-house/pelican

OWSLib extension for ESGF: https://github.com/bird-house/OWSLib-esgfwps

8.5 Washington (December 2018, v0.6.1)

Birdhouse was present at the AGU 2018 and ESGF Face to Face 2018 both in Washington D.C.
Highlighted Changes:
* Improved Birdy WPSClient as a pythonic library for WPS client with support for Jupyter Notebooks.
* Converted Malleefowl and FlyingPigeon to new deployment layout without buildout.
* New birds: Finch WPS for Climate Indicators and Kingfisher for Earth Observation Data Analysis.

 FlyingPigeon has been reborn as the Curious Climate Explorer. Most of its original functionallity has moved to
other birds: BlackSwan, Kingfisher and Finch.

Released Birds:
* Ansible Playbook for PyWPS 0.2.0
¢ Cookiecutter Template for PyWPS 0.3.1
* Birdy WPS Client: 0.5.0
* Emu WPS: 0.9.1
* Hummingbird WPS: 0.6.1
¢ Malleefowl WPS: 0.7.0
Maintained Birds with Buildout:
* Phoenix Web App: 0.8.3
» Twitcher WPS Proxy: 0.3.8
New Birds in the making:
¢ FlyingPigeon (reborn): https://github.com/bird-house/flyingpigeon
* Kingfisher: https://github.com/bird-house/kingfisher
* Finch: https://github.com/bird-house/finch
e Black Swan: https://github.com/bird-house/blackswan

Eggshell: https://github.com/bird-house/eggshell

162 Chapter 8. Release Notes

https://github.com/bird-house/kingfisher
https://github.com/bird-house/blackswan
https://github.com/bird-house/eggshell
https://github.com/bird-house/pelican
https://github.com/bird-house/OWSLib-esgfwps
https://fallmeeting.agu.org/2018/
https://esgf.llnl.gov/2018-F2F.html
https://github.com/bird-house/ansible-wps-playbook/releases/tag/v0.2.0
https://github.com/bird-house/cookiecutter-birdhouse/releases/tag/v0.3.1
https://github.com/bird-house/birdy/releases/tag/v0.5.0
https://github.com/bird-house/emu/releases/tag/v0.9.1
https://github.com/bird-house/hummingbird/releases/tag/v0.6.1
https://github.com/bird-house/malleefowl/releases/tag/v0.7.0
https://github.com/bird-house/pyramid-phoenix/releases/tag/v0.8.3
https://github.com/bird-house/twitcher/releases/tag/v0.3.8
https://github.com/bird-house/flyingpigeon
https://github.com/bird-house/kingfisher
https://github.com/bird-house/finch
https://github.com/bird-house/blackswan
https://github.com/bird-house/eggshell

Birdhouse Documentation, Release 0.7.0

8.6 Dar es Salaam (September 2018, v0.6.0)

Birdhouse was present at the FOSS4G 2018 in Dar es Salaam.
Highlighted Changes:
* Ansible playbook to install PyWPS applications.
 Skipped Buildout deployment ... not all birds are converted yet.
* Updated Cookiecutter template for new deployment.
* Using PyWPS OpenDAP support.
¢ Initial version of Birdy native client.
Released Birds:
* Ansible Playbook for PyWPS 0.1.0
* Cookiecutter Template for PyWPS 0.3.0
Birdy WPS Client: 0.4.0
* Emu WPS: 0.9.0
* Hummingbird WPS: 0.6.0

Maintained Birds with Buildout:
* Phoenix Web App: 0.8.2
e Twitcher WPS Proxy: 0.3.8
* Flyingpigeon WPS: 1.2.1
* Malleefowl WPS: 0.6.8
New Birds in the making:
* Black Swan: https://github.com/bird-house/blackswan
» Eggshell: https://github.com/bird-house/eggshell

8.7 Montréal (March 2018, v0.5.0)

We had a workshop in Montréal with CRIM and Ouranos.
Highlighted Changes:

* Birdhouse has a Logo :)

* A Cookiecutter template for Birdhouse WPS birds is available.

* A new WPS Bird Black Swan for extreme weather event assessments is started by LSCE, Paris. This bird is
spawned off Flyingpigeon.

* A new Python library, Eggshell, is started to provide common base functionallity to WPS birds like Flyingpigeon
and Black Swan.

» The Twitcher security proxy supports now X509 certificates for authentication to WPS services.
Released Birds:
 Phoenix 0.8.1

8.6. Dar es Salaam (September 2018, v0.6.0) 163

https://2018.foss4g.org/
https://github.com/bird-house/ansible-wps-playbook/releases/tag/0.1.0
https://github.com/bird-house/cookiecutter-birdhouse/releases/tag/v0.3.0
https://github.com/bird-house/birdy/releases/tag/v0.4.0
https://github.com/bird-house/emu/releases/tag/v0.9.0
https://github.com/bird-house/hummingbird/releases/tag/v0.6.0
https://github.com/bird-house/pyramid-phoenix/releases/tag/v0.8.2
https://github.com/bird-house/twitcher/releases/tag/v0.3.8
https://github.com/bird-house/flyingpigeon/releases/tag/v.1.2.1
https://github.com/bird-house/malleefowl/releases/tag/v0.6.8
https://github.com/bird-house/blackswan
https://github.com/bird-house/eggshell
https://medium.com/birdhouse-newsletter/april-2018-74c8914648d9
http://cookiecutter-birdhouse.readthedocs.io/en/latest/
https://github.com/bird-house/blackswan
https://a2c2.lsce.ipsl.fr/
http://flyingpigeon.readthedocs.io/en/latest/
https://eggshell.readthedocs.io/en/latest/
http://twitcher.readthedocs.io/en/latest/
https://github.com/bird-house/pyramid-phoenix/releases/tag/0.8.1

Birdhouse Documentation, Release 0.7.0

Birdy 0.2.1
Twitcher 0.3.7
Flyingpigeon 1.2.0
Hummingbird 0.5.7
Malleefowl 0.6.7
Emu 0.6.3

New Birds in the making:

8.8

Black Swan: https://github.com/bird-house/blackswan
Eggshell: https://github.com/bird-house/eggshell

Cookiecutter: https://github.com/bird-house/cookiecutter-birdhouse

Bonn (August 2016, v0.4.0)

Birdhouse was present at the FOSS4G 2016 in Bonn.
Highlighted Changes:

Leaflet map with time-dimension plugin.

using twitcher security proxy.

using conda environments for each birdhouse compartment.
using ansible to deploy birdhouse compartments.

added weather-regimes and analogs detection processes.
allow upload of files to processes.

updated Phoenix user interface.

Paris (October 2015, v0.3.0)

updated documents on readthedocs

OAuth2 used for login with GitHub, Ceda, ...

LDAP support for login

using ncWMS and adagucwms

register and use Thredds catalogs as data source

publish local netcdf files and Thredds catalogs to birdhouse Solr
qualtiy check processes added (cfchecker, qa-dkrz)

generation of docker images for each birdhouse component
using dispeldpy as workflow engine in Malleefowl

using Celery task scheduler/queue to run and monitor WPS processes
improved Phoenix web client

using birdy wps command line client

164

Chapter 8

. Release Notes

https://github.com/bird-house/birdy/releases/tag/0.2.1
https://github.com/bird-house/twitcher/releases/tag/0.3.7
https://github.com/bird-house/flyingpigeon/releases/tag/1.2.0
https://github.com/bird-house/hummingbird/releases/tag/0.5.7
https://github.com/bird-house/malleefowl/releases/tag/0.6.7
https://github.com/bird-house/emu/releases/tag/0.6.3
https://github.com/bird-house/blackswan
https://github.com/bird-house/eggshell
https://github.com/bird-house/cookiecutter-birdhouse
http://2016.foss4g.org/home.html

Birdhouse Documentation, Release 0.7.0

8.10 Paris (September 2014, v0.2.0)

* Phoenix UI as WPS client with ESGF faceted search component and a wizard to chain WPS processes
* PyWPS based processing backend with supporting processes of Malleefowl

¢ WMS service (inculded in Thredds) for visualization of NetCDF files

* OGC CSW catalog service for published results and OGC WPS services

* ESGF data access with wget and OpenID

 Caching of accessed files from ESGF Nodes and Catalog Service

* WPS processes: cdo, climate-indices, ensemble data visualization, demo processes

* [Python environment for WPS processes

* initial unit tests for WPS processes

* Workflow engine Restflow for running processing chains. Currently there is only a simple workflow used: get
data with wget - process data.

¢ Installation based on anaconda and buildout

* buildout recipes (birdhousebuilder) available on PyPI to simplify installation and configuration of multiple WPS
server

* Monitoring of all used services (WPS, WMS, CSW, Phoenix) with supervisor

¢ moved source code and documentation to birdhouse on GitHub

8.11 Helsinki (May 2014, v0.1.2)

« presentation of birdhouse at EGI, Helsinki
* stabilized birdhouse and CSC processes

¢ updated documenation and tutorials

8.12 Vienna (April 2014, v0.1.1)

» presentation of birdhouse at EGU, Vienna.

 “quality check” workflow for CORDEX data.

8.13 Hamburg (December 2013, v0.1.0)

* First presentation of Birdhouse at GERICS (German Climate Service Center), Hamburg.

8.10. Paris (September 2014, v0.2.0) 165

https://www.climate-service-center.de/

Birdhouse Documentation, Release 0.7.0

166 Chapter 8. Release Notes

CHAPTER
NINE

COMMUNICATION

* Chat-room
* Meetings

* Blog-post

e Newsletter

o Wiki

There are numerous ways to interact with the Birdhouse community, for example join the chat or follow our blog.
Also we are present on several conferences where you can enjoy one of our good presentations.

9.1 Chat-room

The most easiest way to drop a line to the developers is our Gitter chat room. If you want to have a quick technical
question to one of the developers, or just wants to follow the discussions, feel welcome to join.

9.2 Meetings

More complex and real discussions are done regularly in video conferences. Check out the information for upcoming
birdhouse meetings. Here you also find the minutes of previews video conferences and feel welcome to join an
upcoming one.

9.3 Blog-post

In the blog you can find interesting articles and information related to birdhouse in general. We also inform regularly
abut the main steps forward in the software development that you can keep track on whats going on in the birdhouse.
If you want to receive a notification of new articles follow birdhouse news on our blog:

e The IT Landscape for Climate Services

 Cyberinfrastructures for Sustainable Development

167

https://gitter.im/bird-house/birdhouse
https://medium.com/birdhouse-newsletter
https://birdhouse.readthedocs.io/en/latest/publications.html
https://gitter.im/bird-house/birdhouse
https://github.com/bird-house/bird-house.github.io/wiki/Meetings
https://medium.com/birdhouse-newsletter
https://medium.com/birdhouse-newsletter
https://medium.com/birdhouse-newsletter/the-it-landscape-for-climate-services-4e21c32c4ffb
https://medium.com/birdhouse-newsletter/cyber-structures-for-sustainable-development-74b3e4deeff1

Birdhouse Documentation, Release 0.7.0

9.4 Newsletter

To be informed about the main progress in the birdhouse development as well as related information you can subscribe
to our newsletter.

9.5 Wiki

The birdhouse wiki provides an area for supporting information that frequently changes and / or is outside the scope
of the formal documentation.

168 Chapter 9. Communication

http://eepurl.com/dGbQ2X
https://github.com/bird-house/bird-house.github.io/wiki

CHAPTER
TEN

LICENSE

Birdhouse is Open Source and released under the Apache License, Version 2.0.

Copyright [2014-2017] [Carsten Ehbrecht]

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an “AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

169

https://opensource.org/licenses/Apache-2.0/
http://www.apache.org/licenses/LICENSE-2.0

Birdhouse Documentation, Release 0.7.0

170 Chapter 10. License

CHAPTER
ELEVEN

GLOSSARY

Anaconda

Anaconda Python distribution Python distribution for large-scale data processing, predictive analytics, and scien-
tific computing. https://www.continuum.io/

Binstar
Anaconda Server

Anaconda cloud Binstar is a service that allows you to create and manage public and private Anaconda package
repositories. https://anaconda.org/ https://docs.continuum.io/

Bokeh Bokeh is a Python interactive visualization library that targets modern web browsers for presentation. Its goal
is to provide elegant, concise construction of novel graphics in the style of D3.js, but also deliver this capability
with high-performance interactivity over very large or streaming datasets. http://bokeh.pydata.org/en/latest/

Buildout Buildout is a Python-based build system for creating, assembling and deploying applications from multiple
parts, some of which may be non-Python-based. It lets you create a buildout configuration and reproduce the
same software later. http://www.buildout.org/en/latest/

CDO

Climate Data Operators CDO is a collection of command line Operators to manipulate and analyse Climate and
NWP model Data. https://code.zmaw.de/projects/cdo

cfchecker The NetCDF Climate Forcast Conventions compliance checker. https://pypi.python.org/pypi/cfchecker

climate indice A climate index is a calculated value that can be used to describe the state and the changes in the
climate system. http://icclim.readthedocs.io/en/latest/intro.html#climate-indices-label

CMIPS5 In climatology, the Coupled Model Intercomparison Project (CMIP) is a framework and the analog of the
Atmospheric Model Intercomparison Project (AMIP) for global coupled ocean-atmosphere general circulation
models. https://en.wikipedia.org/wiki/Coupled_model_intercomparison_project

Conda The conda command is the primary interface for managing Anaconda installations. http://conda.pydata.org/
docs/index.html

CORDEX The CORDEX vision is to advance and coordinate the science and application of regional climate down-
scaling through global partnerships. http://www.cordex.org/

COWS The COWS Web Processing Service (WPS) is a generic web service and offline processing tool developed
within the Centre for Environmental Data Archival (CEDA). http://cows.ceda.ac.uk/cows_wps.html

CSW

Catalog Service Catalog Service for the Web (CSW), sometimes seen as Catalog Service - Web, is a standard for
exposing a catalogue of geospatial records in XML on the Internet (over HTTP). The catalogue is made up
of records that describe geospatial data (e.g. KML), geospatial services (e.g. WMS), and related resources.
https://en.wikipedia.org/wiki/Catalog_Service_for_the_Web

171

https://www.continuum.io/
https://anaconda.org/
https://docs.continuum.io/
http://bokeh.pydata.org/en/latest/
http://www.buildout.org/en/latest/
https://code.zmaw.de/projects/cdo
https://pypi.python.org/pypi/cfchecker
http://icclim.readthedocs.io/en/latest/intro.html#climate-indices-label
https://en.wikipedia.org/wiki/Coupled_model_intercomparison_project
http://conda.pydata.org/docs/index.html
http://conda.pydata.org/docs/index.html
http://www.cordex.org/
http://cows.ceda.ac.uk/cows_wps.html
https://en.wikipedia.org/wiki/Catalog_Service_for_the_Web

Birdhouse Documentation, Release 0.7.0

Dispeldpy Dispel4Py is a Python library for describing abstract workflows for distributed data-intensive applications.
http://www?2.epcc.ed.ac.uk/~amrey/VERCE/Dispel4Py/index.html

Docker Docker - An open platform for distributed applications for developers and sysadmins. https://www.docker.
com/

Docker Hub Docker Hub manages the lifecycle of distributed apps with cloud services for building and sharing
containers and automating workflows. https://hub.docker.com/

Emu Emu is a Python package with some test proccess for Web Processing Services. http://emu.readthedocs.io/en/
latest/

ESGF

Earth System Grid Federation An open source effort providing a robust, distributed data and computation platform,
enabling world wide access to Peta/Exa-scale scientific data. http://esgf.lInl.gov/

GeoPython GitHub organisation of Python projects related to geospatial. https://geopython.github.io/

GeoServer GeoServer is an open source software server written in Java that allows users to share and edit geospatial
data. http://docs.geoserver.org/stable/en/user/index.html

GitHub GitHub is a web-based Git repository hosting service. https://github.com/ https://en.wikipedia.org/wiki/
GitHub

Gunicorn Gunicorn Green Unicorn is a Python WSGI HTTP Server for UNIX. http://gunicorn.org/
Homebrew The missing package manager for OS X. http://brew.sh/
ICCLIM

Indice Calculation CLIMate /CCLIM (Indice Calculation CLIMate) is a Python library for computing a number of
climate indices. http://icclim.readthedocs.io/en/latest/

Linuxbrew Linuxbrew is a fork of Homebrew, the Mac OS package manager, for Linux. http://brew.sh/linuxbrew/

Malleefowl Malleefowl is a Python package to simplify the usage of Web Processing Services. http://malleefowl.
readthedocs.io/en/latest/

NetCDF NetCDF (Network Common Data Form) is a set of software libraries and self-describing, machine-
independent data formats that support the creation, access, and sharing of array-oriented scientific data.
https://en.wikipedia.org/wiki/NetCDF

Nginx nginx [engine x] is an HTTP and reverse proxy server. http://nginx.org/
ocgis

OpenClimateGIS OpenClimateGIS (OCGIS) is a Python package designed for geospatial manipulation, subsetting,
computation, and translation of climate datasets stored in local NetCDF files or files served through THREDDS
data servers. https://www.earthsystemcog.org/projects/openclimategis/ https://github.com/NCPP/ocgis

0GC

Open Geospatial Consortium The Open Geospatial Consortium (OGC) is an international voluntary consensus
standards organization, originated in 1994. https://en.wikipedia.org/wiki/Open_Geospatial_Consortium, http:
/lwww.opengeospatial.org/standards/wps

OpenID OpenlD (OID) is an open standard and decentralized protocol by the non-profit OpenID Foundation that
allows users to be authenticated by certain co-operating sites (known as Relying Parties or RP) using a third
party service. https://en.wikipedia.org/wiki/OpenlD, http://openid.net/

OWSLib OWSLIib is a Python package for client programming with Open Geospatial Consortium web service inter-
face standards, and their related content models. OWSLib has WPS client library which is used in Birdhouse to
access WPS services. http://geopython.github.io/OWSLib/, http://geopython.github.io/OWSLib/#wps

172 Chapter 11. Glossary

http://www2.epcc.ed.ac.uk/~amrey/VERCE/Dispel4Py/index.html
https://www.docker.com/
https://www.docker.com/
https://hub.docker.com/
http://emu.readthedocs.io/en/latest/
http://emu.readthedocs.io/en/latest/
http://esgf.llnl.gov/
https://geopython.github.io/
http://docs.geoserver.org/stable/en/user/index.html
https://github.com/
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/GitHub
http://gunicorn.org/
http://brew.sh/
http://icclim.readthedocs.io/en/latest/
http://brew.sh/linuxbrew/
http://malleefowl.readthedocs.io/en/latest/
http://malleefowl.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/NetCDF
http://nginx.org/
https://www.earthsystemcog.org/projects/openclimategis/
https://github.com/NCPP/ocgis
https://en.wikipedia.org/wiki/Open_Geospatial_Consortium
http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wps
https://en.wikipedia.org/wiki/OpenID
http://openid.net/
http://geopython.github.io/OWSLib/
http://geopython.github.io/OWSLib/#wps

Birdhouse Documentation, Release 0.7.0

Phoenix Pyramid Phoenix is a web-application build with the Python web-framework pyramid. Phoenix has a user
interface to make it easier to interact with Web Processing Services. http://pyramid-phoenix.readthedocs.io/en/
latest

PyCSW pycsw is an OGC CSW server implementation written in Python. Started in 2010 (more formally an-
nounced in 2011), pycsw allows for the publishing and discovery of geospatial metadata, providing a standards-
based metadata and catalogue component of spatial data infrastructures. http://pycsw.org/, https://github.com/
geopython/pycsw

PyPi

Python Package Index The Python Package Index is a repository of software for the Python programming language.
https://pypi.python.org/pypi

Pyramid Pyramid is a Python web framework. http://www.pylonsproject.org/

PyWPS Python Web Processing Service is an implementation of the Web processing Service standard from Open
Geospatial Consortium. http://pywps.org/

RestFlow RestFlow is a dataflow programming language and runtime engine designed to make it easy for scientists
to build and execute computational pipelines. https://github.com/restflow-org/restflow/wiki

Supervisor Supervisor is a client/server system that allows its users to monitor and control a number of processes on
UNIX-like operating systems. http://supervisord.org/

Taverna Taverna is an open source and domain-independent Workflow Management System — a suite of tools used
to design and execute scientific workflows. http://www.taverna.org.uk/

TDS

THREDDS The THREDDS Data Server (TDS) is a web server that provides metadata and data access for scientific
datasets, using a variety of remote data access protocols. http://www.unidata.ucar.edu/software/thredds/current/
tds/

VisTrails VisTrails is an open-source scientific workflow and provenance management system that supports data
exploration and visualization. http://www.vistrails.org/index.php/Main_Page

WMS

Web Mapping Service A Web Map Service (WMS) is a standard protocol for serving georeferenced map images
over the Internet that are generated by a map server using data from a GIS database. https://en.wikipedia.org/
wiki/Web_Map_Service

Workflow

Workflow Management System A workflow management system (WfMS) is a software system for the set-up, per-
formance and monitoring of a defined sequence of tasks, arranged as a workflow. https://en.wikipedia.org/wiki/
Workflow_management_system

WPS

Web Processing Service WPS is an open standard to search and run processes with a simple web-based interface.
See: WPS general usage.

WSGI WSGI is an interface specification by which server and application communicate. http://wsgi.tutorial.
codepoint.net/

x509 In cryptography, X.509 is an ITU-T standard for a public key infrastructure (PKI) and Privilege Management
Infrastructure (PMI). https://en.wikipedia.org/wiki/X.509

XML-RPC 1It’s a spec and a set of implementations that allow software running on disparate operating systems,
running in different environments to make procedure calls over the Internet. http://xmlrpc.scripting.com/default.
html

173

http://pyramid-phoenix.readthedocs.io/en/latest
http://pyramid-phoenix.readthedocs.io/en/latest
http://pycsw.org/
https://github.com/geopython/pycsw
https://github.com/geopython/pycsw
https://pypi.python.org/pypi
http://www.pylonsproject.org/
http://pywps.org/
https://github.com/restflow-org/restflow/wiki
http://supervisord.org/
http://www.taverna.org.uk/
http://www.unidata.ucar.edu/software/thredds/current/tds/
http://www.unidata.ucar.edu/software/thredds/current/tds/
http://www.vistrails.org/index.php/Main_Page
https://en.wikipedia.org/wiki/Web_Map_Service
https://en.wikipedia.org/wiki/Web_Map_Service
https://en.wikipedia.org/wiki/Workflow_management_system
https://en.wikipedia.org/wiki/Workflow_management_system
http://wsgi.tutorial.codepoint.net/
http://wsgi.tutorial.codepoint.net/
https://en.wikipedia.org/wiki/X.509
http://xmlrpc.scripting.com/default.html
http://xmlrpc.scripting.com/default.html

Birdhouse Documentation, Release 0.7.0

174 Chapter 11. Glossary

[MNV+17]

[SL17]

[Tho10]

[WLTK13]

[WDA+16]

[ELH+18]

[HEAC+18]

[JGG+14]

BIBLIOGRAPHY

Barend Mons, Cameron Neylon, Jan Velterop, Michel Dumontier, Luiz Olavo Bonino da Silva Santos,
and Mark D Wilkinson. Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the
European Open Science Cloud. Information Services & Use, 37(1):49-56, 2017. URL: https://content.
iospress.com/articles/information-services-and-use/isu824, doi: 10.3233/ISU-170824.

Martina Stockhause and Michael Lautenschlager. CMIP6 data citation of evolving data. Data Science
Journal, 16:30, 2017. doi:10.5334/dsj-2017-030.

Bejoy K Thomas. Participation in the Knowledge Society: the Free and Open Source Software (FOSS)
movement compared with participatory development. Development in Practice, 20(2):270-276, 2010.
URL.: https://doi.org/10.1080/09614520903566509, doi:10.1080/09614520903566509.

Tobias Weigel, Michael Lautenschlager, Frank Toussaint, and Stephan Kindermann. A framework for
extended persistent identification of scientific assets. Data Science Journal, 12(March):10-22, 2013.
doi:10.2481/dsj.12-036.

Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton,
Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E Bourne, Jildau
Bouwman, Anthony J Brookes, Tim Clark, Merce Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds,
Chris T Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J G Gray, Paul Groth, Carole
Goble, Jeffrey S Grethe, Jaap Heringa, Peter A C 't Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost
Kok, Scott J Lusher, Maryann E Martone, Albert Mons, Abel L Packer, Bengt Persson, Philippe Rocca-
Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted
Slater, George Strawn, Morris A Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen, Jan Vel-
terop, Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao, and Barend Mons. The
FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1):160018,
2016. URL: https://doi.org/10.1038/sdata.2016.18, doi:10.1038/sdata.2016.18.

C. Ehbrecht, T. Landry, N. Hempelmann, D. Huard, and S. Kindermann. Projects based on the
web processing service framework birdhouse. ISPRS - International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, XLII-4/W8:43—47, 2018. URL: https:
/Iwww.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W8/43/2018/, doi:10.5194/isprs-
archives-XLII-4-W8-43-2018.

N. Hempelmann, C. Ehbrecht, C. Alvarez-Castro, P. Brockmann, W. Falk, J. Hoffmann, S. Kindermann,
B. Koziol, C. Nangini, S. Radanovics, R. Vautard, and P. Yiou. Web processing service for climate impact
and extreme weather event analyses. flyingpigeon (version 1.0). Computers & Geosciences, 110(Sup-
plement C):65 — 72, 2018. URL: http://www.sciencedirect.com/science/article/pii/S0098300416302801,
doi:https://doi.org/10.1016/j.cageo.2017.10.004.

C. Jung, M. Gasthuber, A. Giesler, M. Hardt, J. Meyer, F. Rigoll, K. Schwarz, R. Stotzka, and A. Streit.
Optimization of data life cycles. Journal of Physics: Conference Series, 513(3):032047, 2014. URL:
http://stacks.iop.org/1742-6596/513/i=3/a=032047.

175

https://content.iospress.com/articles/information-services-and-use/isu824
https://content.iospress.com/articles/information-services-and-use/isu824
https://doi.org/10.3233/ISU-170824
https://doi.org/10.5334/dsj-2017-030
https://doi.org/10.1080/09614520903566509
https://doi.org/10.1080/09614520903566509
https://doi.org/10.2481/dsj.12-036
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W8/43/2018/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W8/43/2018/
https://doi.org/10.5194/isprs-archives-XLII-4-W8-43-2018
https://doi.org/10.5194/isprs-archives-XLII-4-W8-43-2018
http://www.sciencedirect.com/science/article/pii/S0098300416302801
https://doi.org/https://doi.org/10.1016/j.cageo.2017.10.004
http://stacks.iop.org/1742-6596/513/i=3/a=032047

Birdhouse Documentation, Release 0.7.0

[IMS17] Christopher Jung, Jorg Meyer, and Achim Streit, editors. Helmholtz Portfolio Theme Large-Scale Data
Management and Analysis (LSDMA). KIT Scientific Publishing, Karlsruhe, 2017. ISBN 978-3-7315-
0695-9. 46.12.02; LK 01. doi:10.5445/KSP/1000071931.

176 Bibliography

https://doi.org/10.5445/KSP/1000071931

A

Anaconda, 171

Anaconda cloud, 171

Anaconda Python distribution, 171
Anaconda Server, 171

B

Binstar, 171
Bokeh, 171
Buildout, 171

C

Catalog Service, 171

CDO, 171

cfchecker, 171

Climate Data Operators, 171
climate indice, 171

CMIPS5, 171

Conda, 171

CORDEX, 171

cows, 171

csw, 171

D

Dispelidpy, 172
Docker, 172
Docker Hub, 172

E

FEarth System Grid Federation, 172
Emu, 172
ESGF, 172

G

GeoPython, 172
GeoServer, 172
GitHub, 172
Gunicorn, 172

H

Homebrew, 172

INDEX

ICCLIM, 172
Indice Calculation CLIMate, 172

L

Linuxbrew, 172

M

Malleefowl, 172

N

NetCDF, 172
Nginx, 172

O

ocgis, 172

0GC, 172

Open Geospatial Consortium, 172
OpenClimateGIS, 172

OpenlID, 172

OWSLib, 172

P

Phoenix, 173

PyCsSw, 173

PyPi, 173

Pyramid, 173

Python Package Index, 173
PyWPS, 173

R

RestFlow, 173

S

Supervisor, 173

T

Taverna, 173
TDS, 173
THREDDS, 173

177

Birdhouse Documentation, Release 0.7.0

V

VisTrails, 173

W

Web Mapping Service, 173

Web Processing Service, 173
wMs, 173

Workflow, 173

Workflow Management System, 173
wps, 173

WSGI, 173

X

%509, 173
XML-RPC, 173

178 Index

	Overview
	Documentation structure
	What is WPS?
	WPS Use Case

	Architecture
	Framework structure
	Client Side Components
	Server Side Components
	Files and Folders

	Guidelines
	General Guidelines:
	FAIR Guiding Principles
	Software development
	Setting up a new WPS
	WPS design
	Setting up a new WPS
	Server setup
	References

	Tutorials
	Climate Data with Phyton
	Getting started with PYWPS
	Calling a Service (birdy)
	Basic Usage
	Demo
	WPS general usage
	Climate Indices (finch):
	Hydrological models (raven):
	Server administration
	PyWPS with R

	Publications
	Talks and articles
	References

	Project examples
	PAVICS
	COPERNICUS
	OGC-Testbeds

	Ideas
	PyWPS Profiles

	Release Notes
	Niamey (October 2020, v0.10.0)
	Oxford (April 2020, v0.9.0)
	Bucharest (October 2019, v0.8.0)
	San Francisco (May 2019, v0.7.0)
	Washington (December 2018, v0.6.1)
	Dar es Salaam (September 2018, v0.6.0)
	Montréal (March 2018, v0.5.0)
	Bonn (August 2016, v0.4.0)
	Paris (October 2015, v0.3.0)
	Paris (September 2014, v0.2.0)
	Helsinki (May 2014, v0.1.2)
	Vienna (April 2014, v0.1.1)
	Hamburg (December 2013, v0.1.0)

	Communication
	Chat-room
	Meetings
	Blog-post
	Newsletter
	Wiki

	License
	Glossary
	Bibliography
	Index

