

Birdhouse

[image: Documentation Status]
 [http://birdhouse.readthedocs.io/en/latest/?badge=latest][image: Travis Build]
 [https://travis-ci.org/bird-house/birdhouse-docs][image: GitHub license]
 [https://github.com/bird-house/birdhouse-docs/blob/master/LICENSE.txt][image: Join the chat at https://gitter.im/bird-house/birdhouse]
 [https://gitter.im/bird-house/birdhouse?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]Birdhouse is a GitHub organization comprised of Python projects related
to Web Processing Services [http://geoprocessing.info/wpsdoc/] to support climate data analysis.

The full documentation [http://birdhouse.readthedocs.io/en/latest/]
is available on ReadTheDocs and in the docs/ folder.

	Overview
	Documentation structure

	What is WPS?

	WPS Use Case

	birdhouse framework
	Framework structure

	Client Side Components

	Server Side Components

	Files and Folders

	Project examples
	PAVICS

	COPERNICUS

	OGC-Testbeds

	A2C2

	Guidelines
	Installation Guidelines

	Administrator Guidelines

	Developer Guidelines

	User Guidelines

	Ideas
	PyWPS Profiles

	Communication
	Chat-room

	Meetings

	Blog-post

	Newsletter

	Wiki

	Publications
	Talks and articles

	References

	Release Notes
	Oxford (April 2020, v0.9.0)

	Bucharest (October 2019, v0.8.0)

	San Francisco (May 2019, v0.7.0)

	Washington (December 2018, v0.6.1)

	Dar es Salaam (September 2018, v0.6.0)

	Montréal (March 2018, v0.5.0)

	Bonn (August 2016, v0.4.0)

	Paris (October 2015, v0.3.0)

	Paris (September 2014, v0.2.0)

	Helsinki (May 2014, v0.1.2)

	Vienna (April 2014, v0.1.1)

	Hamburg (December 2013, v0.1.0)

	License

	Glossary

	Useful Links
	WPS Documentation

	WPS Software

	WMS Software

	Scientific Workflow Tools

	Scientific Python

	Python in Climate Science

	Python Web Frameworks and Utils

	Example WPS Services

	Alternatives to WPS

	Related Projects

	References

Overview

	Documentation structure

	What is WPS?

	WPS Use Case

Birdhouse is a collaborative project open for the community to participate. It is a software framework containing a collection of Web Processing Service [http://geoprocessing.info/wpsdoc/] (WPS). The deployed algorithms are focusing on Earth Systems and environmental data processing with the philosophy of streamlining the software development and deployment. By supporting climate, earth observation and biodiversity data and processes, Birdhouse can be used in a wide array of Earth sciences projects and workflows. The core benefit of this project is to allow the seamless use of climate services developed by a diverse network of national meteorological offices, regional climate service providers, academics, not-for-profit research centers and private industry. As governments move toward open-data policies, there will be a need for analytical services that extract value out of the deluge of information. Using an interoperable software architecture, institutions can provide both data and services allowing users to process the data remotely from a laptop, instead of having to acquire and maintain large storage infrastructures.

Documentation structure

The birdhouse documentation reflects the fact that it is an assemblage of independent software components. It’s therefore organized according to the birdhouse framework structure. Birdhouse is being used by international working groups who deploy subsets of components tailored to their user base. The following graph shows an overview of the documentation’s organization:

[image: _images/Documentation_aggrgation.png]

What is WPS?

	Geographic Information Processing for the Web
	The Web Processing Service (WPS) offers a simple web-based method of finding, accessing, and using all kinds of calculations and models.

A WPS is a technical solution (WPS Concepts) in which processes are hosted on a server and accessed over the web (Fig. 1). These processes con-
form to a standardized format, ensuring that they follow the principle of reusable design: they can be instantiated multiple times for different input
arguments or data sources, customized following the same structure to handle new inputs, and are modular, hence can be combined to form new processes.
In addition, a WPS can be installed close to the data to enable processing directly out of the archive. A WPS can also be linked to a theoretically limit-
less combination of several other WPSs, or generally OpenGIS Web Services (OWS).
Our understanding of process is used in the same sense as in the OGC standard: ’for any algorithm, calculation or model that either generates new data or trans-
forms some input data into output data’. A submitted process is a job. A service provides a collection of processes containing scientific methods
that focus on climate impact and extreme weather events. A combination of processes is called a workflow, and a collection of WPS-related software
compartments is a framework. WPS divides the operation into server and client side, with appropriate security in between to avoid misuse.

[image: _images/WPS_principe.png]

Note

Read the documentation on Geographic Information Processing for the Web [http://geoprocessing.info/wpsdoc/]

WPS Use Case

Todo

needs to be updated.

A user runs WPS processes remotely on a machine with direct access to climate data archives.

[image: _images/wps_adamsteer.png]

birdhouse framework

	Framework structure

	Client Side Components

	Server Side Components

	Files and Folders

Birdhouse is organized in separate stand-alone software components. Most components are named after birds, which gives the project its name birdhouse. The components can be categorized into Client Side Components, i.e. tools for end-users, and Server Side Components, i.e. back-end elements of the architecture.

Framework structure

There are several WPS services. Malleefowl [http://malleefowl.readthedocs.io/en/latest/] is the main one for the Phoenix [http://pyramid-phoenix.readthedocs.io/en/latest/] client.
Malleefowl is used to search, download (with caching) ESGF data and to retrieve certificates.
Malleefowl has also a workflow engine (dispel4py [https://github.com/dispel4py/dispel4py]) to chain WPS processes.

The results of the WPS processes are stored on the file system and are accessible via URL (with a token id).
Results can be shown on a Map using a Web Mapping Service (ncWMS, adagucserver).
The PyCSW Catalog Service is used to register WPS services and also to publish WPS outputs.
Published results in the PyCSW can also used as input source for processes again.

ESGF [https://esgf.llnl.gov/] is currently the main climate data resource (but more resources are possible).
ESGF Solr-index is used to find ESGF data. The ESGF identity provider with OpenIDs and X509 certificate is used for authentication.

WPS serivces can be accessed through web-applications like Phoenix or from scripts.

[image: _images/birdhouse-framework.png]

Note

See also the Publications and Presentations for more information and details.

Client Side Components

	Phoenix [http://pyramid-phoenix.readthedocs.io/en/latest/]: a web-based WPS client with ESGF data access

	Birdy [http://birdy.readthedocs.io/en/latest/]: a WPS command line client and native library

Server Side Components

WPS services for climate data analysis:

	Emu [http://emu.readthedocs.io/en/latest/]: some example WPS processes for demo

	Flyingpigeon [http://flyingpigeon.readthedocs.io/en/latest/]: Testbed for new process development

	Black Swan [https://github.com/bird-house/blackswan]: services for the extreme weather event assessments

	Hummingbird [http://birdhouse-hummingbird.readthedocs.io/en/latest/]: provides cdo and compliance-checker as a service

	Finch [https://github.com/bird-house/finch]: services for climate indices calculation

	Pelican [https://github.com/bird-house/pelican]: Supporting ESGF compute API

	Kingfisher [https://kingfisher.readthedocs.io/en/latest/]: Services for Earth-Observation data analysis

Many climate analysis operations are implemented using OpenClimateGIS [https://www.earthsystemcog.org/projects/openclimategis/]
including the python package icclim [http://icclim.readthedocs.io/en/latest/].

Supporting Services and libraries:

	Twitcher [http://twitcher.readthedocs.io/en/latest/]: an OWS Security Proxy

	Malleefowl [http://malleefowl.readthedocs.io/en/latest/]: access to climate data (ESGF, …) as a service

	Eggshell [https://eggshell.readthedocs.io/en/latest/]: provides common functionallity for Birdhouse WPS services

You can find the source code of all birdhouse components on GitHub [https://github.com/bird-house].
Docker images with birdhouse components are on Docker Hub [https://hub.docker.com/r/birdhouse]

Files and Folders

This is an overview of folder structure and important files for administration of a server-side birdhouse ecosystem.

It is recommended to clone the separated WPS services (birds) into one top level folder like:

$ ~/birdhouse/emu
$ ~/birdhouse/pyramid-pheonix
$ ~/birdhouse/finch
$ ~/birdhouse/malleefowl
...

The dependencies of each bird is deployed as conda environment and per default located at:

$ ~/.conda/envs/

The environment of a bird is defined in ./{birdname}/environment.yml.

Process descriptions are placed in ./{birdname}/{birdname}/processes/ while modules designed and used for the service
are situated in ./{birdname}/{birdname}/. Here are also static data like shapefiles, templates or additional data used by the processes.

$./{birdname}/{birdname}/data/shapefiles
$./{birdname}/{birdname}/templates

Each birdhouse compartment has a documentation build with Sphinx and the corresponding files are situated in

$./{birdname}/docs

When running a service, files and folders for input data, result storage, file cache of simply logfiles
are defined in the ./{birdname}/.config.cfg. Default configuration is defined in ./{birdname}/{birdname}/default.cfg
as well as an example can be found in ~./{birdname}/etc.
For more options of configuration see the pywps configuration instructions [https://pywps.readthedocs.io/en/master/configuration.html]

For development and deployment testing the installations be checked running tests (make test). Test descriptions testdata
are situated in:

$./{birdname}/tests
$./{birdname}/tests/testdata

Project examples

	PAVICS

	Backend - PAVICS Node

	Data storage

	Indexation

	Climate Analytic Processes with Birdhouse

	Authentication and authorization

	Gridded data visualization

	COPERNICUS

	OGC-Testbeds

	A2C2

The birdhouse framework is modular organized to enable a flexible architecture design depending on the projects needs. Due to the OCG Standard, software components non-birdhouse components can be combined for interoperability. Here are some examples of real projects to show the flexibility and potential of the birdhouse framework.

PAVICS

	PAVICS [https://ouranosinc.github.io/pavics-sdi/]: Platform for climate analysis and visualization by Ouranos [https://www.ouranos.ca/] and CRIM [https://www.crim.ca/en], Canada.

	PAVICS-Hydro [https://medium.com/birdhouse-newsletter/web-processing-services-for-hydrological-modeling-7b5eb5c426ed] : Additional services for PAVICS [https://ouranosinc.github.io/pavics-sdi/] allowing users to perform hydrological modeling and analysis.

	Backend - PAVICS Node
	Data storage

	Indexation

	Climate Analytic Processes with Birdhouse

	Authentication and authorization

	Gridded data visualization

Backend - PAVICS Node

[image: images/PAVICS_architecture.png]
PAVICS nodes are data, compute and index endpoints accessed through the PAVICS platform or external clients. The Node service is the backend that provides data storage, metadata harvesting, indexation and discovery of local and federated data, user authentication and authorization, server registration and management. The node service is therefore composed of several services that are briefly described below, accompanied by links to the full documentation of each individual building block.

The backend of PAVICS-SDI is built entirely with Free and Open Source Software. All of the backend projects (source code and documentation) are open to be inspected, built upon, or contributed to.

Data storage

Data is stored on two different servers: THREDDS for gridded netCDF data, and GeoServer for GIS features (region polygons, river networks).

	THREDDS
	The Thematic Real-time Environmental Distributed Data Services (THREDDS [https://www.unidata.ucar.edu/software/thredds/current/tds/]) is a server system for providing scientific data and metadata access through various online protocols. The PAVICS platform relies on THREDDS to provide access to all netCDF data archives, as well as output files created by processes. The code is hosted on this GitHub repository [https://github.com/Unidata/thredds]. THREDDS support direct file access as well as the OPeNDAP protocol, which allows the netCDF library to access segments of the hosted data without downloading the entire file. Links to files archived on THREDDS are thus used as inputs to WPS processes. File content cannot however be directly displayed by the frontend and require an intermediary (see ncWMS).

	GeoServer
	GeoServer [http://geoserver.org/about/] is an OGC compliant server system built for viewing, editing, and presenting geospatial data. PAVICS uses GeoServer as its database for vector geospatial information, such as administrative regions, watersheds and river networks. The frontend sends requests for layers that can be overlayed on the map canvas. See the GeoServer documentation [http://docs.geoserver.org/] for more information on its capabilities.

Indexation

Although information about file content is stored in the netCDF metadata fields, accessing and reading those fields one by one takes a considerable amount of time. The strategies used here mimic those used by ESGF, and comprises running a crawler over all netCDF files hosted on THREDDS, extracting relevant metadata and storing them in a SOLR [http://lucene.apache.org/solr/] database. Search queries are thus directed at SOLR, which returns a list of links matching the search terms. The crawler is part of the PAVICS-DataCatalog [https://github.com/Ouranosinc/PAVICS-DataCatalog] library.

	SOLR
	SOLR [http://lucene.apache.org/solr/] is a search platform part of the Apache Lucene project. It is used in this project for its faceted search capability. Search queries are relayed from the UI or WPS processes to the SOLR database, which returns a json file with the links to matching files.

	PAVICS-DataCatalog
	PAVICS-DataCatalog [https://github.com/Ouranosinc/PAVICS-DataCatalog] is a database system for storing and serving information about available climate data.

Climate Analytic Processes with Birdhouse

The climate computing aspect of PAVICS is largely built upon the many components developed as part of the Birdhouse Project [https://github.com/bird-house/birdhouse-docs/blob/master/slides/birdhouse-architecture/birdhouse-architecture.pdf]. The goal of Birdhouse is to develop a collection of easy-to-use Web Processing Service (WPS) servers providing climate analytic algorithms. Birdhouse servers are called ‘birds’, each one offering a set of individual processes:

	Birdhouse/Finch
	Provides access to a large suite of climate indicators, largely inspired by `ICCLIM`_.
Finch Official Documentation [https://finch.readthedocs.io/en/latest/]

	Raven
	Provides hydrological modeling capability using the Raven [http://raven.uwaterloo.ca/] framework, along with model calibration utilities, regionalization tools, hydrological indicators and frequency analysis.

	Birdhouse/Malleefowl
	Provides processes to access ESGF data nodes and THREDDS catalogs, as well as a workflow engine to string different processes together.
Malleefowl Official Documentation [https://malleefowl.readthedocs.io/en/latest/]

	Birdhouse/Flyingpigeon
	Provides a wide array of climate services including indices computation, spatial analogs, weather analogs, species distribution model, subsetting and averaging, climate fact sheets, etc. FlyingPigeon is the sand box for emerging services, which eventually will make their way to more stable and specialized birds.
Flyingpigeon Official Documentation [https://flyingpigeon.readthedocs.io/en/latest/]

	Birdhouse/Hummingbird
	Provides access to climate Data Operators (CDO [https://code.mpimet.mpg.de/projects/cdo/]) functions and compliance-checker for netCDF files.
Hummingbird Official Documentation [https://birdhouse-hummingbird.readthedocs.io/en/latest/]

Virtually all individual processes ingest and return netCDF files (or OPeNDAP links), such that one process’ output can be used as the input of another process. This lets scientist create complex workflows. By insisting that process inputs and outputs comply with the CF-Convention, we make sure that data is accompanied by clear and unambiguous metadata.

Authentication and authorization

Access to files and services is controlled by a security proxy called `Twitcher`_, also part of Birdhouse. Upon login, the proxy issues access tokens that allow users to access services behind the proxy. CRIM developed a Twitcher extension called Magpie [https://github.com/Ouranosinc/Magpie] that provides a higher level of granularity for service access.

	Twitcher
	Proxy service issuing access tokens necessary to run WPS processes or any other OWS service.

	Magpie
	Manages user/group/resource permissions for services behind Twitcher.

Gridded data visualization

The UI can display 2D netCDF fields by making a request to a ncWMS [https://reading-escience-centre.github.io/ncwms/] server. The UI will specify which time step of which file to map, and ncWMS [https://reading-escience-centre.github.io/ncwms/] will fetch the data from the THREDDS server, then convert the array into an image embedded into a WMS response. This conversion requires a mapping of numerical value to a color scale: a colormap and min/max values. The colormap is defined by the user through the UI, while default min/max values are stored in our SOLR [http://lucene.apache.org/solr/] database by the metadata crawler. Users may also specify min/max values directly within the UI.

	ncWMS
	ncWMS [https://reading-escience-centre.github.io/ncwms/] is an implementation of the OGC’s Web Mapping Service (WMS) specifically built for multidimensional gridded data such as the netCDF format. The PAVICS platform uses it to convert gridded netCDF data layers from a file or an OPeNDAP link to an image that can be accessed through WMS GetMap requests. See this reference paper [https://doi.org/10.1016/j.envsoft.2013.04.002] for more information.

COPERNICUS

	CP4CDS: Climate Projects for the Climate Data Store [https://cds.climate.copernicus.eu/] (part of the European Union’s Copernicus Climate Change Service [https://climate.copernicus.eu/]).

OGC-Testbeds

Todo

Add references to OGC testbed.

	OGC Testbed 13: Enhancement of scheduling services

	OGC Testbed 14: Enhancement of security

A2C2

	A2C2 [https://a2c2.lsce.ipsl.fr/]: Atmospheric flow Analogues for Climate Change

Backend - PAVICS Node

[image: ../../../../../_images/PAVICS_architecture.png]
PAVICS nodes are data, compute and index endpoints accessed through the PAVICS platform or external clients. The Node service is the backend that provides data storage, metadata harvesting, indexation and discovery of local and federated data, user authentication and authorization, server registration and management. The node service is therefore composed of several services that are briefly described below, accompanied by links to the full documentation of each individual building block.

The backend of PAVICS-SDI is built entirely with Free and Open Source Software. All of the backend projects (source code and documentation) are open to be inspected, built upon, or contributed to.

Data storage

Data is stored on two different servers: THREDDS for gridded netCDF data, and GeoServer for GIS features (region polygons, river networks).

	THREDDS
	The Thematic Real-time Environmental Distributed Data Services (THREDDS [https://www.unidata.ucar.edu/software/thredds/current/tds/]) is a server system for providing scientific data and metadata access through various online protocols. The PAVICS platform relies on THREDDS to provide access to all netCDF data archives, as well as output files created by processes. The code is hosted on this GitHub repository [https://github.com/Unidata/thredds]. THREDDS support direct file access as well as the OPeNDAP protocol, which allows the netCDF library to access segments of the hosted data without downloading the entire file. Links to files archived on THREDDS are thus used as inputs to WPS processes. File content cannot however be directly displayed by the frontend and require an intermediary (see ncWMS).

	GeoServer
	GeoServer [http://geoserver.org/about/] is an OGC compliant server system built for viewing, editing, and presenting geospatial data. PAVICS uses GeoServer as its database for vector geospatial information, such as administrative regions, watersheds and river networks. The frontend sends requests for layers that can be overlayed on the map canvas. See the GeoServer documentation [http://docs.geoserver.org/] for more information on its capabilities.

Indexation

Although information about file content is stored in the netCDF metadata fields, accessing and reading those fields one by one takes a considerable amount of time. The strategies used here mimic those used by ESGF, and comprises running a crawler over all netCDF files hosted on THREDDS, extracting relevant metadata and storing them in a SOLR [http://lucene.apache.org/solr/] database. Search queries are thus directed at SOLR, which returns a list of links matching the search terms. The crawler is part of the PAVICS-DataCatalog [https://github.com/Ouranosinc/PAVICS-DataCatalog] library.

	SOLR
	SOLR [http://lucene.apache.org/solr/] is a search platform part of the Apache Lucene project. It is used in this project for its faceted search capability. Search queries are relayed from the UI or WPS processes to the SOLR database, which returns a json file with the links to matching files.

	PAVICS-DataCatalog
	PAVICS-DataCatalog [https://github.com/Ouranosinc/PAVICS-DataCatalog] is a database system for storing and serving information about available climate data.

Climate Analytic Processes with Birdhouse

The climate computing aspect of PAVICS is largely built upon the many components developed as part of the Birdhouse Project [https://github.com/bird-house/birdhouse-docs/blob/master/slides/birdhouse-architecture/birdhouse-architecture.pdf]. The goal of Birdhouse is to develop a collection of easy-to-use Web Processing Service (WPS) servers providing climate analytic algorithms. Birdhouse servers are called ‘birds’, each one offering a set of individual processes:

	Birdhouse/Finch
	Provides access to a large suite of climate indicators, largely inspired by `ICCLIM`_.
Finch Official Documentation [https://finch.readthedocs.io/en/latest/]

	Raven
	Provides hydrological modeling capability using the Raven [http://raven.uwaterloo.ca/] framework, along with model calibration utilities, regionalization tools, hydrological indicators and frequency analysis.

	Birdhouse/Malleefowl
	Provides processes to access ESGF data nodes and THREDDS catalogs, as well as a workflow engine to string different processes together.
Malleefowl Official Documentation [https://malleefowl.readthedocs.io/en/latest/]

	Birdhouse/Flyingpigeon
	Provides a wide array of climate services including indices computation, spatial analogs, weather analogs, species distribution model, subsetting and averaging, climate fact sheets, etc. FlyingPigeon is the sand box for emerging services, which eventually will make their way to more stable and specialized birds.
Flyingpigeon Official Documentation [https://flyingpigeon.readthedocs.io/en/latest/]

	Birdhouse/Hummingbird
	Provides access to climate Data Operators (CDO [https://code.mpimet.mpg.de/projects/cdo/]) functions and compliance-checker for netCDF files.
Hummingbird Official Documentation [https://birdhouse-hummingbird.readthedocs.io/en/latest/]

Virtually all individual processes ingest and return netCDF files (or OPeNDAP links), such that one process’ output can be used as the input of another process. This lets scientist create complex workflows. By insisting that process inputs and outputs comply with the CF-Convention, we make sure that data is accompanied by clear and unambiguous metadata.

Authentication and authorization

Access to files and services is controlled by a security proxy called `Twitcher`_, also part of Birdhouse. Upon login, the proxy issues access tokens that allow users to access services behind the proxy. CRIM developed a Twitcher extension called Magpie [https://github.com/Ouranosinc/Magpie] that provides a higher level of granularity for service access.

	Twitcher
	Proxy service issuing access tokens necessary to run WPS processes or any other OWS service.

	Magpie
	Manages user/group/resource permissions for services behind Twitcher.

Gridded data visualization

The UI can display 2D netCDF fields by making a request to a ncWMS [https://reading-escience-centre.github.io/ncwms/] server. The UI will specify which time step of which file to map, and ncWMS [https://reading-escience-centre.github.io/ncwms/] will fetch the data from the THREDDS server, then convert the array into an image embedded into a WMS response. This conversion requires a mapping of numerical value to a color scale: a colormap and min/max values. The colormap is defined by the user through the UI, while default min/max values are stored in our SOLR [http://lucene.apache.org/solr/] database by the metadata crawler. Users may also specify min/max values directly within the UI.

	ncWMS
	ncWMS [https://reading-escience-centre.github.io/ncwms/] is an implementation of the OGC’s Web Mapping Service (WMS) specifically built for multidimensional gridded data such as the netCDF format. The PAVICS platform uses it to convert gridded netCDF data layers from a file or an OPeNDAP link to an image that can be accessed through WMS GetMap requests. See this reference paper [https://doi.org/10.1016/j.envsoft.2013.04.002] for more information.

Guidelines

To guide you through the learning curve of installation modules of birdhouse and set up an running birdhouse ecosystem, administer the server-side birdhouse components or even improve and develop your own specific functions, here are some general guidelines:

	Installation Guidelines
	Requirements

	Installing from source

	Nginx, gunicorn and supervisor

	Using birdhouse with Docker

	Administrator Guidelines
	Set up a birdhouse ecosystem server

	Backups

	Asking for Support

	Developer Guidelines
	Code of Conduct

	Contribution Workflow

	Writing a WPS process

	Writing functions

	Writing tests

	Writing documentation

	Code Style

	Environment with conda

	Make your own Bird

	Release Notes and Versions:

	User Guidelines
	Command-line

	Phoenix Web App

	Python Library

Installation Guidelines

	Requirements

	Installing from source

	Nginx, gunicorn and supervisor

	Using birdhouse with Docker

Warning

This section is outdated …

Birdhouse consists of several components like Malleefowl [http://malleefowl.readthedocs.io/en/latest/] and Emu [http://emu.readthedocs.io/en/latest/]. Each of them can be installed individually.
The installation is done using the Python-based build system Buildout.
Most of the dependencies are maintained in the Anaconda Python distribution.
For convenience, each birdhouse component has a Makefile [https://birdhousebuilderbootstrap.readthedocs.io/en/latest/usage.html#makefile]
to ease the installation so you don’t need to know how to call the Buildout build tool.

Requirements

Birdhouse uses Anaconda Python distribution for most of the dependencies. If Anaconda is not already installed, it will be installed during the installation process. Anaconda has packages for Linux, MacOSX and Windows. But not all packages used by birdhouse are already available in the default package channel of Anaconda. The missing packages are supplied by birdhouse on Binstar. But we currently maintain only packages for Linux 64-bit and partly for MacOSX.

So the short answer to the requirements is: you need a Linux 64-bit installation.

Birdhouse is currently used on Ubuntu 14.04 and CentOS 6.x. It should also work on Debian, LinuxMint and Fedora.

Birdhouse also installs a few system packages using apt-get on Debian based distributions and yum on RedHat/CentOS based distributions. For this you need a user account with sudo permissions. Installing system packages can be done in a separate step. So your installation user does not need any special permissions. All installed files will go into a birdhouse Anaconda environment in the home folder of the installation user.

Installing from source

The installation of birdhouse components from source is done with some few commands. Here is an example for the Emu WPS service:

$ git clone https://github.com/bird-house/emu.git
$ cd emu
$ make clean install
$ make start
$ firefox http://localhost:8094/wps

All the birdhouse components follow the same installation pattern. If you want to see all the options of the Makefile then type:

$ make help

You will find more information about these options in the Makefile documentation [https://birdhousebuilderbootstrap.readthedocs.io/en/latest/usage.html#makefile].

Read the documention of each birdhouse component for the details of the installation and how to configure the components. The birdhouse bootstrap documentation [https://birdhousebuilderbootstrap.readthedocs.io/en/latest/index.html#introduction] gives some examples [https://birdhousebuilderbootstrap.readthedocs.io/en/latest/examples.html#examples] of the different ways of making the installation.

On the WPS client side we have:

	Phoenix [http://pyramid-phoenix.readthedocs.io/en/latest/]: a Pyramid web application.

	Birdy [http://birdy.readthedocs.io/en/latest/]: a simple WPS command line tool.

On the WPS server side we have:

	Malleefowl [http://malleefowl.readthedocs.io/en/latest/]: provides base WPS services to access data.

	Flyingpigeon [http://flyingpigeon.readthedocs.io/en/latest/]: provides WPS services for the climate impact community.

	Hummingbird [http://birdhouse-hummingbird.readthedocs.io/en/latest/]: provides WPS services for CDO and climate metadata checks.

	Emu [http://emu.readthedocs.io/en/latest/]: just some WPS processes for testing.

Nginx, gunicorn and supervisor

Birdhouse sets up a PyWPS server (and also the Phoenix web application) using Buildout. We use the Gunicorn HTTP application server (similar to Tomcat for Java servlet applications) to run these web applications with the WSGI interface. In front of the Gunicorn application server, we use the Nginx HTTP server (similar to the Apache web server). All these web services are started/stopped and monitored by a Supervisor service.

See the following image for how this looks like:

[image: _images/WsgiApp.png]
When installing a birdhouse WPS service, you don’t need to care about this setup. This is all done by Buildout and using some extensions provided by birdhouse.

The Makefile of a birdhouse application has convenience targets to start/stop a WPS service controlled by the Supervisor and to check the status:

$ make start # start wps service
$ make stop # stop wps service
$ make status # show status of wps service
Supervisor status ...
/home/pingu/.conda/envs/birdhouse/bin/supervisorctl status
emu RUNNING pid 25698, uptime 0:00:02
malleefowl RUNNING pid 25702, uptime 0:00:02
mongodb RUNNING pid 25691, uptime 0:00:02
nginx RUNNING pid 25699, uptime 0:00:02
phoenix RUNNING pid 25694, uptime 0:00:02
pycsw RUNNING pid 25700, uptime 0:00:02
tomcat RUNNING pid 25693, uptime 0:00:02

You can also use the Supervisor monitor web service which by default is available on port http://localhost:9001/. The Supervisor monitor app looks like in the following screenshot.

[image: _images/supervisor-monitor.png]

Using birdhouse with Docker

An alternative way to install and deploy birdhouse Web Processing Services is by using Docker.
The birdhouse WPS servers are available as a Docker image on Docker Hub [https://hub.docker.com/r/birdhouse/].
See an example on how to use them with the Emu WPS Docker image [https://emu.readthedocs.io/en/latest/tutorial.html#tutorial].

Administrator Guidelines

	Set up a birdhouse ecosystem server

	General Remarks

	Prepare Installation

	Get the source code from GitHub

	Run Installation

	Start the Services

	Launching the Phoenix Web App

	Register a service in Phoenix Web App

	Launching a Job

	Changing the default configuration

	Update Phoenix Password

	Backups

	Asking for Support

Warning

This section needs is outdated and needs to be rewritten!

Set up a birdhouse ecosystem server

If you are already familiar with installing single standalone WPS (follow the Installation Guidelines guides in the documentations of e.g. emu), then you are ready to set up a birdhouse containing flyingpigeon (providing scientific analyses methods), malleefowl (to search and fetch data) and the pheonix (a graphic interface for a web browser including a WMS).

General Remarks

Check the Requirements of your system!

The installation is done as normal user, root rights are causing conflicts.

Prepare Installation

It is recommended to collect the repositories in a separate folder (e.g. birdhouse, but can have a name of your choice):

$ mkdir birdhouse
$ cd birdhouse

Get the source code from GitHub

$ git clone https://github.com/bird-house/flyingpigeon.git
$ git clone https://github.com/bird-house/pyramid-phoenix.git
$ git clone https://github.com/bird-house/malleefowl.git

Run Installation

You can run the installation with default settings.
It will create a conda environment and deploy all required software dependencies there.

Note

Read the changing the default configuration if you want to customize the configuration.

In all of the tree folders (malleefowl, flyingpigeon and pyramid-phoenix) run:

$ make install

This installation will take some minutes to fetch all dependencies and install them into separate conda environments.

Start the Services

in all of the birds run:

$ make start

Launching the Phoenix Web App

If the services are running, you can launch the GUI in a common web browser. By default, phoenix is set to port 8081:

firefox http://localhost:8081

or:

firefox https://localhost:8443/

Now you can log in (upper right corner) with your Phoenix password created previously.
Phoenix is just a graphical interface with no more function than looking nice ;-).

Register a service in Phoenix Web App

Note

Please read the Phoenix documentation [https://pyramid-phoenix.readthedocs.io/en/latest/user_guide.html#]

Your first administration step is to register flyingpigeon as a service.
For that, log in with your phoenix password.
In the upper right corner is a tool symbol to open the settings.
Click on Services and the Register a Service.

Flyingpigeon is per default on port 8093.

The appropriate url is:

http://localhost:8093/wps

Provide service title and name as you like:
* Service Title: Flyingpigeon
* Service Name: flyingpigeon

check Service Type: Web Processing Service (default) and register.

Optionally, you can check Public access?, to allow unregistered users to launch jobs. (NOT recommended)

Launching a Job

Now your birdhouse ecosysem is set up.
The also installed malleefowl is already running in the background and will do a lot of work silently.
There is no need to register malleefowl manually!

Launching a job can be performed as a process (Process menu) or with the wizard. To get familliar with the processes provided by each of the birds, read the approriate documentation for each of the services listed in the overview: [http://birdhouse.readthedocs.io/en/latest/index.html]

Changing the default configuration

You can customize the configuration of the service. Please read the documentation, for example:

	Phoenix documentation [https://pyramid-phoenix.readthedocs.io/en/latest/configuration.html]

	Flyingpigeon documentation [https://flyingpigeon.readthedocs.io/en/latest/configuration.html]

Furthermore, you might change the hostname (to make your service accessible from outside), ESGF-node connection,
the port or the log-level for more/less information in the administrator logfiles.
Here is an example pyramid-phoenix/custom.cfg:

[settings]
hostname = localhost
http-port = 8081
https-port = 8443
log-level = DEBUG
run 'make passwd' and to generate password hash
phoenix-password = sha256:513....
generate secret
python -c "import os; print(''.join('%02x' % ord(x) for x in os.urandom(16)))"
phoenix-secret = d5e8417....30
esgf-search-url = https://esgf-data.dkrz.de/esg-search
wps-url = http://localhost:8091/wps

Update Phoenix Password

To be able to log into the Phoenix GUI once the services are running, it is necessary to generate a password:
go into the pyramid-phoenix folder and run:

$ make passwd

This will automatically write a password hash into pyramid-phoenix/custom.cfg

Backups

See the mongodb documentation [https://docs.mongodb.com/manual/core/backups/] on how to backup the database.
With the following command you can make a dump of the users collection of the Phoenix database:

$ mongodump --port 27027 --db phoenix_db --collection users

Asking for Support

In case of questions or trouble shooting, feel welcome to join
the birdhouse chat [https://gitter.im/bird-house/birdhouse]
and get into contact with the developers directly.

Developer Guidelines

	Code of Conduct

	Contribution Workflow

	Writing a WPS process

	Writing functions

	Writing tests

	Writing documentation

	Code Style

	Environment with conda

	Make your own Bird

	Release Notes and Versions:

Code of Conduct

Note

Before we start please be aware that contributors to this project are expected to act respectfully toward others in accordance with the OSGeo Code of Conduct [http://www.osgeo.org/code_of_conduct].

Contribution Workflow

The Birdhouse project openly welcomes contributions (bug reports, bug fixes, code enhancements/features, etc.). This document will outline some guidelines on contributing to birdhouse. As well, the birdhouse Communication is a great place to get an idea of how to connect and participate in birdhouse community and development where everybody is welcome to rise questions and discussions.

Here are some basic guides to smoothly contribute to birdhouse:

Source code

The source code of all birdhouse components is available on GitHub [https://github.com/bird-house]. Respecting the git mechanisms you can fork, clone and pull source-code into your repositories for modification and enhancement. Once your improvement is ready, make a pull request to integrate your work into the origin birdhouse repositories.

Note

Please keep your forks close to the origin repositories and don’t forget the pull requests.

Issue tracker

To keep track on the contribution and development, please use the issue tracker on GitHub for the corresponding birdhouse component.

Please find the coding guide in the
Wiki [https://github.com/bird-house/bird-house.github.io/wiki/Development-Guidelines].

Writing a WPS process

In birdhouse, we are using the PyWPS [http://pywps.org/] implementation of a Web Processing Service.
Please read the PyWPS documentation [https://pywps.readthedocs.io/en/master/process.html]
on how to implement a WPS process.

Note

To get started quickly, you can try the Emu [http://emu.readthedocs.io/en/latest/] WPS with some example processes for PyWPS.

[image: _images/process_schema_1.png]
Another point to think about when designing a process is the possibility of chaining processes together. The result of a process can be a final result or be used as an input for another process. Chaining processes is a common practice but depends on the user you are designing the service for.
Technically, for the development of WPS process chaining, here are a few summary points:

	the functional code should be modular and provide an interface/method for each single task

	provide a wps process for each task

	wps processes can be chained, manually or within the code, to run a complete workflow

	wps chaining can be done manually, with workflow tools, direct wps chaining or with code scripts

	a complete workflow chain could also be started by a wps process.

[image: _images/wps_chain.png]

Writing functions

A Process is calling several functions during the performance. Since WPS is a autonom running process several eventualities needs to be taken into account. If irregularities are occurring, it is a question of the process design if the performance should stop and return an error or continue with may be an modified result.

In practice, the functions should be encapsulated in try and except calls and appropriate information given to the logfile or shown as a status message. The logger has several options to to influence the running code and the information writing to the logfile:

[image: _images/module_chain.png]
	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	# the following two line needs to be in the beginning of the *.py file.
The ._handler will find the appropriate logfile and include timestemps
and module information into the log.

import logging
LOGGER = logging.getLogger("PYWPS")

set a status message
per = 5 # 5 will be 5% in the status line
response.update_status('execution started at : {}'.fromat(dt.now()), per)

try:
 response.update_status('the process is doing something: {}'.fromat(dt.now()),10)
 result = 42
 LOGGER.info('found the answer of life')
except Exception as ex:
 msg = 'This failed but is obligatory for the output. The process stops now, because: {} '.format(ex)
 LOGGER.error(msg)

try:
 response.update_status('the process is doing something else : {}'.fromat(dt.now()), 20)
 interesting = True
 LOGGER.info(' Thanks for reading the guidelines ')
 LOGGER.debug(' I need to know some details of the process: {} '.format(interesting)
except Exception as ex:
 msg = 'This failed but is not obligatory for the output. The process will continue. Reason for the failure: {} '.format(ex)
 LOGGER.exception(msg)

Writing tests

Todo

Guideline to write tests. Look at the Emu [http://emu.readthedocs.io/en/latest/] to see examples.

Writing documentation

Last but not least, a very very important point is to write a good documentation about your work! Each WPS (bird) has a docs folder for this where the documentation is written in reStructuredText [http://sphinx-doc.org/rest.html] and generated with Sphinx [http://sphinx-doc.org/].

	http://sphinx-doc.org/tutorial.html

	http://quick-sphinx-tutorial.readthedocs.io/en/latest/

The documentation is automatically published to ReadTheDocs [https://readthedocs.org] with GitHub webhooks.
It is important to keep the Code Style and write explanations to your functions. There is an auto-api for documentation of functions.

Todo

explanation of enabling spinx automatic api documentation.

The main documentation [https://github.com/bird-house/birdhouse-docs] (which you are reading now) is the starting point to
get an overview of birdhouse. Each birdhouse component comes with
its own Sphinx documentation and is referenced by the main birdhouse document. Projects using birdhouse components like PAVICS_ or COPERNICUS Data Store [https://cds.climate.copernicus.eu/#!/home] generally have their own documentation as well. To include documentation from external repository here, two custom made sphinx directives can be used. The gittoctree directive behaves like a normal table of content directive (toctree), but takes as an argument the URL to the git repo and refers to files inside this directory through their full path. The gitinclude directive acts like an normal include directive, but takes as a first argument the URL to the git repo this file belongs to. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	Here is the text of the birdhouse main documentation. At the place where you want to integrate
a part of a remote sphinx documentation stored in a `git` repository you can fetch the docs
parts and integrated it with a table of content referring to external files:

.. gittoctree:: https://github.com/Ouranosinc/pavics-sdi.git

 docs/source/arch/backend.rst

or include an individual file:

.. gitinclude:: https://github.com/Ouranosinc/pavics-sdi.git docs/source/arch/backend.rst

The directive will clone and checkout the repository, then include these external files as if
they were part of the native documentation.

Code Style

A good start to contribute is an enhancement of existing code with better or new functions. To respect a common coding style, Birdhouse uses PEP8 [https://www.python.org/dev/peps/pep-0008/] checks to ensure a consistent coding style. Currently the following PEP8 rules are enabled in setup.cfg:

[flake8]
ignore=F401,E402
max-line-length=120
exclude=tests

See the flake8 [http://flake8.pycqa.org/en/latest/] documentation on how to configure further options.

To check the coding style run flake8:

$ flake8 emu # emu is the folder with python code
or
$ make pep8 # make calls flake8

To make it easier to write code according to the PEP8 rules enable PEP8 checking in your editor. In the following we give examples how to enable code checking for different editors.

Atom

	Homepage: https://atom.io/

	PEP8 Atom Plugin: https://github.com/AtomLinter/linter-pep8

[image: _images/atom-pep8.png]

Sublime

	Install package control if you don’t already have it: https://packagecontrol.io/installation

	Follow the instructions here to install Python PEP8 Autoformat: https://packagecontrol.io/packages/Python%20PEP8%20Autoformat

	Edit the settings to conform to the values used in birdhouse, if necessary

	To show the ruler and make wordwrap default, open Preferences → Settings—User and use the following rules

{
 // set vertical rulers in specified columns.
 "rulers": [79],

 // turn on word wrap for source and text
 // default value is "auto", which means off for source and on for text
 "word_wrap": true,

 // set word wrapping at this column
 // default value is 0, meaning wrapping occurs at window width
 "wrap_width": 79
 }

Todo

Add PEP8 instructions for more editors: PyCharm, Kate, Emacs, Vim, Spyder.

Environment with conda

Todo

How to create a conda package

Make your own Bird

If you are familiar with all the upper chapters you are ready to create your own WPS. The WPS in birdhouse are named after birds, so this section is giving you a guidline of how to make your own bird. Birds are sorted thematically, so before setting up a new one, make sure it is not already covered and just missing some processes and be clear in the new thematic you would like to provide.

We have now a Cookiecutter [http://cookiecutter-birdhouse.readthedocs.io/en/latest/] template to create a new bird (PyWPS application).
It is the recommended and fastest way to create your own bird:

https://github.com/bird-house/cookiecutter-birdhouse

Note

The cookiecutter is brand-new. Please give feedback and help to improve it.

Release Notes and Versions:

The development of birdhouse is following a release cycle of around three month. Updates of modules are coordinated by the developers over the communication channels (gitter chat or Video Conference).
New releases are documented in the release notes and communicated over the mailing list.
A release of a birdhouse module is taged with a version number and appropriate git repository version branch.

For an orientation of when to release a new version:

	Full version (v1.0) with scientific publication in a reviewed journal

	subversion (v1.1) by major changes

	subsub versions (v1.1.1) by minor changes

out of the release cycles bug fix patches can be released every time (communication is not mandatory)

	patch v1.1.1_patch1 bugfix

User Guidelines

	Command-line

	Phoenix Web App

	Python Library

Warning

Work in progress. Examples will come soon.

You can connect to a WPS service in the following ways:

	using a command-line tool in your terminal.

	using a web based application from your browser.

	using a Python library from a jupyter notebook or your Python scripts.

Command-line

Todo

birdy example

Phoenix Web App

Todo

Screen-shot of Phoenix

Python Library

	Python syntax:

Python syntax:

"""Python WPS execute"""

from owslib.wps import WebProcessingService, monitorExecution
from os import system

wps = WebProcessingService(url="http://localhost:8093/wps", verbose=False)
print("Service '{}' is running".format(wps.identification.title))

Service 'Flyingpigeon' is running

for process in wps.processes:
 print('{} : \t {}'.format(process.identifier, process.abstract))

subset : Return the data for which grid cells intersect the selected polygon for each input dataset as well asthe time range selected.
subset_bbox : Return the data for which grid cells intersect the bounding box for each input dataset as well asthe time range selected.
subset_continents : Return the data whose grid cells intersect the selected continents for each input dataset.
subset_countries : Return the data whose grid cells intersect the selected countries for each input dataset.
pointinspection : Extract the timeseries at the given coordinates.
subset_WFS : Return the data for which grid cells intersect the selected polygon for each input dataset.
plot_timeseries : Outputs some timeseries of the file field means. Spaghetti and uncertainty plot

define some data urls

url1 = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.dailyavgs/surface/slp.2000.nc'
url2 = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.dailyavgs/surface/slp.2001.nc'
url3 = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.dailyavgs/surface/slp.2002.nc'
url4 = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.dailyavgs/surface/slp.2003.nc'

execute = wps.execute(
 identifier="plot_timeseries", #indices_clipping",
 inputs=[
 ("resource",url1),
 ("resource",url2),
 ("resource",url3),
 ("resource",url4),
 # ("variable" , "slp"),
])

monitorExecution(execute, sleepSecs=5)
print(execute.getStatus())

for o in execute.processOutputs:
 print(o.reference)

 owslib.wps.WPSException : {'code': 'NoApplicableCode', 'locator': 'None', 'text': 'Process failed, please check server error log'}
ProcessFailed

from eggshell.nc.nc_utils import get_coordinates

Ideas

In this section we are collection ideas how we could improve our coding and
design in the Birdhouse/WPS context.

	PyWPS Profiles
	Motivation

	Python Mixins

	Python Decorators

	Simple Alternative: Shared Profile Module/Class

PyWPS Profiles

	Motivation

	Python Mixins

	Python Decorators

	Simple Alternative: Shared Profile Module/Class

Warning

Work in progress.

Motivation

It happens quite often that we have a set of processes with common input (and output) parameters.
In WPS the process signature (inputs+outputs) is called a WPS profile [http://geoprocessing.info/wpsdoc/FAQ#profile].
In the following we show examples how to avoid copy+paste of these process parameters.

Python Mixins

One could use Python mixin classes to define a commonly used profile
which can be adapted by each individual process.

See how a mixin class looks like:

https://www.ianlewis.org/en/mixins-and-python

See notebook examples how it could be used with PyWPS:

https://nbviewer.jupyter.org/github/bird-house/notebooks/blob/master/pywps-profiles/notebooks/process_mixin.ipynb

Python Decorators

We can also use function decorator to define a WPS profile for PyWPS.

See how a function decorator looks like:

https://krzysztofzuraw.com/blog/2016/python-class-decorators.html

Here are some notebook examples how it could be used with PyWPS:

	notebooks: https://nbviewer.jupyter.org/github/bird-house/notebooks/blob/master/pywps-profiles/notebooks/process_decorator.ipynb

	Emu subset with ESGF-API: https://github.com/bird-house/emu/blob/esgfwps/emu/processes/wps_esgf_subset.py

Simple Alternative: Shared Profile Module/Class

Relatively few developers will be familiar with the concepts of mixins and decorators.
In other words, it might look a bit too much like magic.
We could also simply create a module with all the common inputs and outputs used
throughout the different WPS processes (wpsio.py).
For a given Process definition, one then just import wpsio and refer to the objects
in the inputs and outputs fields of the Process.init method.

See for example:

https://github.com/Ouranosinc/raven/blob/master/raven/processes/wps_regionalisation.py

Here is a notebook showing this approach which includes also an optional decorator:

https://nbviewer.jupyter.org/github/bird-house/notebooks/blob/master/pywps-profiles/notebooks/process_simple_profile_and_decorator.ipynb

Communication

	Chat-room

	Meetings

	Blog-post

	Newsletter

	Wiki

There are numerous ways to interact with the Birdhouse community,
for example join the chat [https://gitter.im/bird-house/birdhouse] or follow our blog [https://medium.com/birdhouse-newsletter]. Also we are present on several conferences where you can enjoy one of our good presentations [https://birdhouse.readthedocs.io/en/latest/publications.html].

Chat-room

The most easiest way to drop a line to the developers is our Gitter chat [https://gitter.im/bird-house/birdhouse] room.
If you want to have a quick technical question to one of the developers,
or just wants to follow the discussions, feel welcome to join.

Meetings

More complex and real discussions are done regularly in video conferences.
Check out the information for upcoming birdhouse meetings [https://github.com/bird-house/bird-house.github.io/wiki/Meetings].
Here you also find the minutes of previews video conferences and feel welcome to join an upcoming one.

Blog-post

In the blog [https://medium.com/birdhouse-newsletter] you can find interesting articles and information related to birdhouse in general.
We also inform regularly abut the main steps forward in the software development that you can keep track on whats going on in the birdhouse.
If you want to receive a notification of new articles follow birdhouse news on our blog [https://medium.com/birdhouse-newsletter]:

	The IT Landscape for Climate Services [https://medium.com/birdhouse-newsletter/the-it-landscape-for-climate-services-4e21c32c4ffb]

	Cyberinfrastructures for Sustainable Development [https://medium.com/birdhouse-newsletter/cyber-structures-for-sustainable-development-74b3e4deeff1]

Newsletter

To be informed about the main progress in the birdhouse development as well as related information you can subscribe to our newsletter [http://eepurl.com/dGbQ2X].

Wiki

The birdhouse wiki [https://github.com/bird-house/bird-house.github.io/wiki] provides an area for supporting information that frequently
changes and / or is outside the scope of the formal documentation.

Publications

	Talks and articles

	References

Talks and articles

Articles, book sections and conference proceedings and presentations related to the birdhouse projects:

2019:

	WPS Deployment at CORDEX Copernicus Workshop, Copenhagen [https://github.com/cehbrecht/wps-talk-copernicus-cordex-dmi-meeting-2019/blob/master/WPS-Deployment-Talk.pdf]

	UN GIS Initiative Workshop at FOSS4G Bucharest [https://github.com/nilshempelmann/presentations/raw/master/birdhouse-foss4g-2019/Hempelmann_foss4g2019.pdf]

2018:

	Birdhouse in ISPRS photogrammetry and remote-sensing [https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W8/43/2018/] [ELH+18]

	FOSS4G 2018 in Dar-Es-Salaam [https://github.com/nilshempelmann/presentations/blob/master/birdhouse-foss4g-2018/Hempelmann_foss4g2018.pdf]

	Open Climate GIS and Birdhouse at Pangeo Developer Workshop, 2018 [https://medium.com/pangeo/the-2018-pangeo-developers-workshop-1be359dac33c]

	IGARSS 2018 [https://www.igarss2018.org/Papers/viewpapers.asp?papernum=3632]

	D-GEO Days, 2018 [https://github.com/nilshempelmann/presentations/blob/master/birdhouse-D-GEO/main.pdf]

	GIZ Fachtagung, 2018 [https://github.com/nilshempelmann/presentations/blob/master/birdhouse-fata2018/main.pdf]

	Copernicus/Birdhouse at EGU 2018, Vienna [https://presentations.copernicus.org/EGU2018-6491_presentation.pdf]

	Flyingpigeon in Computes and Geosciences, January 2018 [HEAC+18]

2017:

	Birdhouse in LSDMA book, 2017 [https://publikationen.bibliothek.kit.edu/1000071931] [JMS17]

	UNCCC Subgroup 2017 in Kigali [https://github.com/nilshempelmann/presentations/blob/master/birdhouse-UNFCCC/CCNUCC_Kigali2017.pdf]

2016:

	AGU 2016 in San Francisco [http://www.crim.ca/media/publication/fulltext/agu2016_presentation_short_ouranos.pdf]

	ESGF F2F 2016 in Washington [https://github.com/cehbrecht/birdhouse-esgf-f2f-2016/blob/master/birdhouse-esgf-f2f-2016_dkrz.pdf]

	FOSS4G 2016 in Bonn [https://github.com/nilshempelmann/presentations/blob/master/birdhouse-foss4g-2016/Hempelmann_foss4g2016.pdf]

	EGI Workshop 2016 in Amsterdam [https://github.com/cehbrecht/birdhouse-talk-egi-2016/blob/master/birdhouse-talk-egi-2016.pdf]

	EGU 2016 in Vienna [https://github.com/cehbrecht/birdhouse-talk-egu-2016/blob/master/EGU-Processing-DKRZ.pdf]

	ICRC-CORDEX 2016 [https://github.com/nilshempelmann/presentations/blob/master/Hempelmann_CORDEX2016_datatoinformation.pdf]

	Model Animation LSCE

	Talk on USGS WebEx 2016/02/18 [https://my.usgs.gov/confluence/pages/viewpage.action?pageId=542482181]

2015:

	Paris Coding Spring 2015 at IPSL [https://github.com/cehbrecht/birdhouse-talk-coding-sprint-ipsl-2015/blob/master/birdhouse-architecture.pdf]

2014:

	EGI Community Forum 2014 at Helsinki [https://indico.egi.eu/indico/event/1994/session/23/contribution/134]

	Prag

	Optimization of data life cycles [JGG+14]

2013:

	Gerics Hamburg User-Developer Workshop

References

	ELH+18

	C. Ehbrecht, T. Landry, N. Hempelmann, D. Huard, and S. Kindermann. Projects based on the web processing service framework birdhouse. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W8:43–47, 2018. URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W8/43/2018/, doi:10.5194/isprs-archives-XLII-4-W8-43-2018 [https://doi.org/10.5194/isprs-archives-XLII-4-W8-43-2018].

	HEAC+18

	N. Hempelmann, C. Ehbrecht, C. Alvarez-Castro, P. Brockmann, W. Falk, J. Hoffmann, S. Kindermann, B. Koziol, C. Nangini, S. Radanovics, R. Vautard, and P. Yiou. Web processing service for climate impact and extreme weather event analyses. flyingpigeon (version 1.0). Computers & Geosciences, 110(Supplement C):65 – 72, 2018. URL: http://www.sciencedirect.com/science/article/pii/S0098300416302801, doi:https://doi.org/10.1016/j.cageo.2017.10.004 [https://doi.org/https://doi.org/10.1016/j.cageo.2017.10.004].

	JGG+14

	C. Jung, M. Gasthuber, A. Giesler, M. Hardt, J. Meyer, F. Rigoll, K. Schwarz, R. Stotzka, and A. Streit. Optimization of data life cycles. Journal of Physics: Conference Series, 513(3):032047, 2014. URL: http://stacks.iop.org/1742-6596/513/i=3/a=032047.

	JMS17

	Christopher Jung, Jörg Meyer, and Achim Streit, editors. Helmholtz Portfolio Theme Large-Scale Data Management and Analysis (LSDMA). KIT Scientific Publishing, Karlsruhe, 2017. ISBN 978-3-7315-0695-9. 46.12.02; LK 01. doi:10.5445/KSP/1000071931 [https://doi.org/10.5445/KSP/1000071931].

Release Notes

	Oxford (April 2020, v0.9.0)

	Bucharest (October 2019, v0.8.0)

	San Francisco (May 2019, v0.7.0)

	Washington (December 2018, v0.6.1)

	Dar es Salaam (September 2018, v0.6.0)

	Montréal (March 2018, v0.5.0)

	Bonn (August 2016, v0.4.0)

	Paris (October 2015, v0.3.0)

	Paris (September 2014, v0.2.0)

	Helsinki (May 2014, v0.1.2)

	Vienna (April 2014, v0.1.1)

	Hamburg (December 2013, v0.1.0)

Oxford (April 2020, v0.9.0)

Highlighted Changes:

	Keycloak support in Twitcher and Phoenix.

Released Tools:

	Twitcher WPS Proxy: 0.6.0 [https://github.com/bird-house/twitcher/releases/tag/v0.6.0]

	Ansible Playbook for PyWPS 0.3.0 [https://github.com/bird-house/ansible-wps-playbook/releases/tag/v0.3.0]

	Ansible Playbook for Twitcher 0.1.0 [https://github.com/bird-house/ansible-twitcher-playbook/releases/tag/v0.1.0]

	Cookiecutter Template for PyWPS 0.4.2 [https://github.com/bird-house/cookiecutter-birdhouse/releases/tag/v0.4.2]

	Birdy WPS Client: 0.6.9 [https://github.com/bird-house/birdy/releases/tag/v0.6.9]

Released WPS services:

	Emu WPS: 0.11.1 [https://github.com/bird-house/emu/releases/tag/v0.11.1]

	FlyingPigeon WPS: 1.5.1 [https://github.com/bird-house/flyingpigeon/releases/tag/v1.5.1]

	Finch WPS: 0.5.1 [https://github.com/bird-house/finch/releases/tag/v0.5.1]

	Hummingbird WPS: 0.9.0 [https://github.com/bird-house/hummingbird/releases/tag/v0.9.0]

Maintained Apps with Buildout:

	Phoenix Web App: 0.11.0 [https://github.com/bird-house/pyramid-phoenix/releases/tag/v0.11.0]

Bucharest (October 2019, v0.8.0)

PyWPS was present at FOSS4G 2019 in Bucharest [https://2019.foss4g.org/].

Highlighted Changes:

	Skipped buildout in Twitcher.

	Skipped conda handling in Makefile.

	Working on OAuth support in Twitcher and birdy.

	Released OWSLib extension for ESGF compute API.

Released Birds:

	Twitcher WPS Proxy: 0.5.2 [https://github.com/bird-house/twitcher/releases/tag/v0.5.2]

	Ansible Playbook for PyWPS 0.2.2 [https://github.com/bird-house/ansible-wps-playbook/releases/tag/v0.2.2]

	Cookiecutter Template for PyWPS 0.4.1 [https://github.com/bird-house/cookiecutter-birdhouse/releases/tag/v0.4.1]

	Birdy WPS Client: 0.6.5 [https://github.com/bird-house/birdy/releases/tag/v0.6.5]

	Emu WPS: 0.11.0 [https://github.com/bird-house/emu/releases/tag/v0.11.0]

	FlyingPigeon WPS: 1.5 [https://github.com/bird-house/flyingpigeon/releases/tag/v1.5]

	Finch WPS: 0.2.5 [https://github.com/bird-house/finch/releases/tag/v0.2.5]

	Hummingbird WPS: 0.8.0 [https://github.com/bird-house/hummingbird/releases/tag/v0.8.0]

	Malleefowl WPS: 0.9.0 [https://github.com/bird-house/malleefowl/releases/tag/v0.9.0]

	OWSLib extension for ESGF: 0.2.0 [https://github.com/bird-house/OWSLib-esgfwps/releases/tag/v0.2.0]

Maintained Birds with Buildout:

	Phoenix Web App: 0.10.0 [https://github.com/bird-house/pyramid-phoenix/releases/tag/v0.10.0]

New Birds in the making:

	Kingfisher: https://github.com/bird-house/kingfisher

	Black Swan: https://github.com/bird-house/blackswan

	Eggshell: https://github.com/bird-house/eggshell

	Pelican: https://github.com/bird-house/pelican

San Francisco (May 2019, v0.7.0)

Highlighted Changes:

	All released birds support only Python >3.6.

	Support for the ESGF WPS profile [https://github.com/ESGF/esgf-compute-api]
with a Pelican WPS demo and an OWSLib extension.

	Support for MetaLink [https://pywps.readthedocs.io/en/latest/process.html#returning-multiple-files]
in Birdy and PyWPS to return multiple files as WPS output.

	Release of Finch [https://finch.readthedocs.io/en/latest/], a WPS for climate indicators.

Released Birds:

	Ansible Playbook for PyWPS 0.2.1 [https://github.com/bird-house/ansible-wps-playbook/releases/tag/v0.2.1]

	Cookiecutter Template for PyWPS 0.4.0 [https://github.com/bird-house/cookiecutter-birdhouse/releases/tag/v0.4.0]

	Birdy WPS Client: 0.6.0 [https://github.com/bird-house/birdy/releases/tag/v0.6.0]

	Emu WPS: 0.10.0 [https://github.com/bird-house/emu/releases/tag/v0.10.0]

	FlyingPigeon WPS: 1.4.1 [https://github.com/bird-house/flyingpigeon/releases/tag/v1.4.1]

	Finch WPS: 0.2.0 [https://github.com/bird-house/finch/releases/tag/v0.2]

	Hummingbird WPS: 0.7.0 [https://github.com/bird-house/hummingbird/releases/tag/v0.7.0]

	Malleefowl WPS: 0.8.0 [https://github.com/bird-house/malleefowl/releases/tag/v0.8.0]

Maintained Birds with Buildout:

	Phoenix Web App: 0.9.0 [https://github.com/bird-house/pyramid-phoenix/releases/tag/v0.9.0]

	Twitcher WPS Proxy: 0.4.0 [https://github.com/bird-house/twitcher/releases/tag/v0.4.0]

New Birds in the making:

	Kingfisher: https://github.com/bird-house/kingfisher

	Black Swan: https://github.com/bird-house/blackswan

	Eggshell: https://github.com/bird-house/eggshell

	Pelican: https://github.com/bird-house/pelican

	OWSLib extension for ESGF: https://github.com/bird-house/OWSLib-esgfwps

Washington (December 2018, v0.6.1)

Birdhouse was present at the
AGU 2018 [https://fallmeeting.agu.org/2018/]
and
ESGF Face to Face 2018 [https://esgf.llnl.gov/2018-F2F.html]
both in Washington D.C.

Highlighted Changes:

	Improved Birdy WPSClient as a pythonic library for WPS client with support for Jupyter Notebooks.

	Converted Malleefowl and FlyingPigeon to new deployment layout without buildout.

	New birds: Finch WPS for Climate Indicators and Kingfisher for Earth Observation Data Analysis.

	FlyingPigeon has been reborn as the Curious Climate Explorer. Most of its original functionallity
has moved to other birds: BlackSwan, Kingfisher and Finch.

Released Birds:

	Ansible Playbook for PyWPS 0.2.0 [https://github.com/bird-house/ansible-wps-playbook/releases/tag/v0.2.0]

	Cookiecutter Template for PyWPS 0.3.1 [https://github.com/bird-house/cookiecutter-birdhouse/releases/tag/v0.3.1]

	Birdy WPS Client: 0.5.0 [https://github.com/bird-house/birdy/releases/tag/v0.5.0]

	Emu WPS: 0.9.1 [https://github.com/bird-house/emu/releases/tag/v0.9.1]

	Hummingbird WPS: 0.6.1 [https://github.com/bird-house/hummingbird/releases/tag/v0.6.1]

	Malleefowl WPS: 0.7.0 [https://github.com/bird-house/malleefowl/releases/tag/v0.7.0]

Maintained Birds with Buildout:

	Phoenix Web App: 0.8.3 [https://github.com/bird-house/pyramid-phoenix/releases/tag/v0.8.3]

	Twitcher WPS Proxy: 0.3.8 [https://github.com/bird-house/twitcher/releases/tag/v0.3.8]

New Birds in the making:

	FlyingPigeon (reborn): https://github.com/bird-house/flyingpigeon

	Kingfisher: https://github.com/bird-house/kingfisher

	Finch: https://github.com/bird-house/finch

	Black Swan: https://github.com/bird-house/blackswan

	Eggshell: https://github.com/bird-house/eggshell

Dar es Salaam (September 2018, v0.6.0)

Birdhouse was present at the FOSS4G 2018 in Dar es Salaam [https://2018.foss4g.org/].

Highlighted Changes:

	Ansible playbook to install PyWPS applications.

	Skipped Buildout deployment … not all birds are converted yet.

	Updated Cookiecutter template for new deployment.

	Using PyWPS OpenDAP support.

	Initial version of Birdy native client.

Released Birds:

	Ansible Playbook for PyWPS 0.1.0 [https://github.com/bird-house/ansible-wps-playbook/releases/tag/0.1.0]

	Cookiecutter Template for PyWPS 0.3.0 [https://github.com/bird-house/cookiecutter-birdhouse/releases/tag/v0.3.0]

	Birdy WPS Client: 0.4.0 [https://github.com/bird-house/birdy/releases/tag/v0.4.0]

	Emu WPS: 0.9.0 [https://github.com/bird-house/emu/releases/tag/v0.9.0]

	Hummingbird WPS: 0.6.0 [https://github.com/bird-house/hummingbird/releases/tag/v0.6.0]

Maintained Birds with Buildout:

	Phoenix Web App: 0.8.2 [https://github.com/bird-house/pyramid-phoenix/releases/tag/v0.8.2]

	Twitcher WPS Proxy: 0.3.8 [https://github.com/bird-house/twitcher/releases/tag/v0.3.8]

	Flyingpigeon WPS: 1.2.1 [https://github.com/bird-house/flyingpigeon/releases/tag/v.1.2.1]

	Malleefowl WPS: 0.6.8 [https://github.com/bird-house/malleefowl/releases/tag/v0.6.8]

New Birds in the making:

	Black Swan: https://github.com/bird-house/blackswan

	Eggshell: https://github.com/bird-house/eggshell

Montréal (March 2018, v0.5.0)

We had a workshop in Montréal [https://medium.com/birdhouse-newsletter/april-2018-74c8914648d9] with CRIM and Ouranos.

Highlighted Changes:

	Birdhouse has a Logo :)

	A Cookiecutter [http://cookiecutter-birdhouse.readthedocs.io/en/latest/] template for Birdhouse WPS birds is available.

	A new WPS Bird Black Swan [https://github.com/bird-house/blackswan] for extreme weather event assessments is started
by LSCE [https://a2c2.lsce.ipsl.fr/], Paris. This bird is spawned off Flyingpigeon [http://flyingpigeon.readthedocs.io/en/latest/].

	A new Python library, Eggshell [https://eggshell.readthedocs.io/en/latest/], is started to provide common base functionallity
to WPS birds like Flyingpigeon and Black Swan.

	The Twitcher [http://twitcher.readthedocs.io/en/latest/] security proxy supports now X509 certificates for authentication to WPS services.

Released Birds:

	Phoenix 0.8.1 [https://github.com/bird-house/pyramid-phoenix/releases/tag/0.8.1]

	Birdy 0.2.1 [https://github.com/bird-house/birdy/releases/tag/0.2.1]

	Twitcher 0.3.7 [https://github.com/bird-house/twitcher/releases/tag/0.3.7]

	Flyingpigeon 1.2.0 [https://github.com/bird-house/flyingpigeon/releases/tag/1.2.0]

	Hummingbird 0.5.7 [https://github.com/bird-house/hummingbird/releases/tag/0.5.7]

	Malleefowl 0.6.7 [https://github.com/bird-house/malleefowl/releases/tag/0.6.7]

	Emu 0.6.3 [https://github.com/bird-house/emu/releases/tag/0.6.3]

New Birds in the making:

	Black Swan: https://github.com/bird-house/blackswan

	Eggshell: https://github.com/bird-house/eggshell

	Cookiecutter: https://github.com/bird-house/cookiecutter-birdhouse

Bonn (August 2016, v0.4.0)

Birdhouse was present at the FOSS4G 2016 in Bonn [http://2016.foss4g.org/home.html].

Highlighted Changes:

	Leaflet map with time-dimension plugin.

	using twitcher security proxy.

	using conda environments for each birdhouse compartment.

	using ansible to deploy birdhouse compartments.

	added weather-regimes and analogs detection processes.

	allow upload of files to processes.

	updated Phoenix user interface.

Paris (October 2015, v0.3.0)

	updated documents on readthedocs

	OAuth2 used for login with GitHub, Ceda, …

	LDAP support for login

	using ncWMS and adagucwms

	register and use Thredds catalogs as data source

	publish local netcdf files and Thredds catalogs to birdhouse Solr

	qualtiy check processes added (cfchecker, qa-dkrz)

	generation of docker images for each birdhouse component

	using dispel4py as workflow engine in Malleefowl

	using Celery task scheduler/queue to run and monitor WPS processes

	improved Phoenix web client

	using birdy wps command line client

Paris (September 2014, v0.2.0)

	Phoenix UI as WPS client with ESGF faceted search component and a wizard to chain WPS processes

	PyWPS based processing backend with supporting processes of Malleefowl

	WMS service (inculded in Thredds) for visualization of NetCDF files

	OGC CSW catalog service for published results and OGC WPS services

	ESGF data access with wget and OpenID

	Caching of accessed files from ESGF Nodes and Catalog Service

	WPS processes: cdo, climate-indices, ensemble data visualization, demo processes

	IPython environment for WPS processes

	initial unit tests for WPS processes

	Workflow engine Restflow for running processing chains. Currently there is only a simple workflow used: get data with wget - process data.

	Installation based on anaconda and buildout

	buildout recipes (birdhousebuilder) available on PyPI to simplify installation and configuration of multiple WPS server

	Monitoring of all used services (WPS, WMS, CSW, Phoenix) with supervisor

	moved source code and documentation to birdhouse on GitHub

Helsinki (May 2014, v0.1.2)

	presentation of birdhouse at EGI, Helsinki

	stabilized birdhouse and CSC processes

	updated documenation and tutorials

Vienna (April 2014, v0.1.1)

	presentation of birdhouse at EGU, Vienna.

	“quality check” workflow for CORDEX data.

Hamburg (December 2013, v0.1.0)

	First presentation of Birdhouse at GERICS [https://www.climate-service-center.de/] (German Climate Service Center), Hamburg.

License

Birdhouse is Open Source and released under the Apache License, Version 2.0 [https://opensource.org/licenses/Apache-2.0/].

Copyright [2014-2017] [Carsten Ehbrecht]

Licensed under the Apache License, Version 2.0 (the “License”);

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an “AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

Glossary

	Anaconda
	Anaconda Python distribution
	Python distribution for large-scale data processing, predictive analytics, and scientific computing.
https://www.continuum.io/

	Binstar
	Anaconda Server
	Anaconda cloud
	Binstar is a service that allows you to create and manage public and private Anaconda package repositories.
https://anaconda.org/
https://docs.continuum.io/

	Bokeh
	Bokeh is a Python interactive visualization library that targets modern web browsers for presentation. Its goal is to provide elegant, concise construction of novel graphics in the style of D3.js, but also deliver this capability with high-performance interactivity over very large or streaming datasets.
http://bokeh.pydata.org/en/latest/

	Buildout
	Buildout is a Python-based build system for creating, assembling and deploying applications from multiple parts, some of which may be non-Python-based. It lets you create a buildout configuration and reproduce the same software later.
http://www.buildout.org/en/latest/

	CDO
	Climate Data Operators
	CDO is a collection of command line Operators to manipulate and analyse Climate and NWP model Data.
https://code.zmaw.de/projects/cdo

	cfchecker
	The NetCDF Climate Forcast Conventions compliance checker.
https://pypi.python.org/pypi/cfchecker

	climate indice
	A climate index is a calculated value that can be used to describe the state and the changes in the climate system.
http://icclim.readthedocs.io/en/latest/intro.html#climate-indices-label

	CMIP5
	In climatology, the Coupled Model Intercomparison Project (CMIP) is a framework and the analog of the Atmospheric Model Intercomparison Project (AMIP) for global coupled ocean-atmosphere general circulation models.
https://en.wikipedia.org/wiki/Coupled_model_intercomparison_project

	Conda
	The conda command is the primary interface for managing Anaconda installations.
http://conda.pydata.org/docs/index.html

	CORDEX
	The CORDEX vision is to advance and coordinate the science and application of regional climate downscaling through global partnerships.
http://www.cordex.org/

	COWS
	The COWS Web Processing Service (WPS) is a generic web service and offline processing tool developed within the Centre for Environmental Data Archival (CEDA).
http://cows.ceda.ac.uk/cows_wps.html

	CSW
	Catalog Service
	Catalog Service for the Web (CSW), sometimes seen as Catalog Service - Web, is a standard for exposing a catalogue of geospatial records in XML on the Internet (over HTTP). The catalogue is made up of records that describe geospatial data (e.g. KML), geospatial services (e.g. WMS), and related resources.
https://en.wikipedia.org/wiki/Catalog_Service_for_the_Web

	Dispel4py
	Dispel4Py is a Python library for describing abstract workflows for distributed data-intensive applications.
http://www2.epcc.ed.ac.uk/~amrey/VERCE/Dispel4Py/index.html

	Docker
	Docker - An open platform for distributed applications for developers and sysadmins.
https://www.docker.com/

	Docker Hub
	Docker Hub manages the lifecycle of distributed apps with cloud services for building and sharing containers and automating workflows.
https://hub.docker.com/

	Emu
	Emu is a Python package with some test proccess for Web Processing Services.
http://emu.readthedocs.io/en/latest/

	ESGF
	Earth System Grid Federation
	An open source effort providing a robust, distributed data and computation platform, enabling world wide access to Peta/Exa-scale scientific data.
http://esgf.llnl.gov/

	GeoPython
	GitHub organisation of Python projects related to geospatial.
https://geopython.github.io/

	GeoServer
	GeoServer is an open source software server written in Java that allows users to share and edit geospatial data.
http://docs.geoserver.org/stable/en/user/index.html

	GitHub
	GitHub is a web-based Git repository hosting service.
https://github.com/
https://en.wikipedia.org/wiki/GitHub

	Gunicorn
	Gunicorn Green Unicorn is a Python WSGI HTTP Server for UNIX.
http://gunicorn.org/

	Homebrew
	The missing package manager for OS X.
http://brew.sh/

	ICCLIM
	Indice Calculation CLIMate
	ICCLIM (Indice Calculation CLIMate) is a Python library for computing a number of climate indices.
http://icclim.readthedocs.io/en/latest/

	Linuxbrew
	Linuxbrew is a fork of Homebrew, the Mac OS package manager, for Linux.
http://brew.sh/linuxbrew/

	Malleefowl
	Malleefowl is a Python package to simplify the usage of Web Processing Services.
http://malleefowl.readthedocs.io/en/latest/

	NetCDF
	NetCDF (Network Common Data Form) is a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data.
https://en.wikipedia.org/wiki/NetCDF

	Nginx
	nginx [engine x] is an HTTP and reverse proxy server.
http://nginx.org/

	ocgis
	OpenClimateGIS
	OpenClimateGIS (OCGIS) is a Python package designed for geospatial manipulation, subsetting, computation, and translation of climate datasets stored in local NetCDF files or files served through THREDDS data servers.
https://www.earthsystemcog.org/projects/openclimategis/
https://github.com/NCPP/ocgis

	OGC
	Open Geospatial Consortium
	The Open Geospatial Consortium (OGC) is an international voluntary consensus standards organization, originated in 1994.
https://en.wikipedia.org/wiki/Open_Geospatial_Consortium,
http://www.opengeospatial.org/standards/wps

	OpenID
	OpenID (OID) is an open standard and decentralized protocol by the non-profit OpenID Foundation that allows users to be authenticated by certain co-operating sites (known as Relying Parties or RP) using a third party service.
https://en.wikipedia.org/wiki/OpenID, http://openid.net/

	OWSLib
	OWSLib is a Python package for client programming with Open Geospatial Consortium web service interface standards, and their related content models. OWSLib has WPS client library which is used in Birdhouse to access WPS services.
http://geopython.github.io/OWSLib/,
http://geopython.github.io/OWSLib/#wps

	Phoenix
	Pyramid Phoenix is a web-application build with the Python web-framework pyramid.
Phoenix has a user interface to make it easier to interact with Web Processing Services.
http://pyramid-phoenix.readthedocs.io/en/latest

	PyCSW
	pycsw is an OGC CSW server implementation written in Python. Started in 2010 (more formally announced in 2011), pycsw allows for the publishing and discovery of geospatial metadata, providing a standards-based metadata and catalogue component of spatial data infrastructures.
http://pycsw.org/, https://github.com/geopython/pycsw

	PyPi
	Python Package Index
	The Python Package Index is a repository of software for the Python programming language.
https://pypi.python.org/pypi

	Pyramid
	Pyramid is a Python web framework.
http://www.pylonsproject.org/

	PyWPS
	Python Web Processing Service is an implementation of the Web processing Service standard from Open Geospatial Consortium.
http://pywps.org/

	RestFlow
	RestFlow is a dataflow programming language and runtime engine designed to make it easy for scientists to build and execute computational pipelines.
https://github.com/restflow-org/restflow/wiki

	Supervisor
	Supervisor is a client/server system that allows its users to monitor and control a number of
processes on UNIX-like operating systems.
http://supervisord.org/

	Taverna
	Taverna is an open source and domain-independent Workflow Management System – a suite of tools used to design and execute scientific workflows.
http://www.taverna.org.uk/

	TDS
	THREDDS
	The THREDDS Data Server (TDS) is a web server that provides metadata and data access for scientific datasets, using a variety of remote data access protocols.
http://www.unidata.ucar.edu/software/thredds/current/tds/

	VisTrails
	VisTrails is an open-source scientific workflow and provenance management system that supports data exploration and visualization.
http://www.vistrails.org/index.php/Main_Page

	WMS
	Web Mapping Service
	A Web Map Service (WMS) is a standard protocol for serving georeferenced map images over the Internet that are generated by a map server using data from a GIS database. https://en.wikipedia.org/wiki/Web_Map_Service

	Workflow
	Workflow Management System
	A workflow management system (WfMS) is a software system for the set-up, performance and monitoring of a defined sequence of tasks, arranged as a workflow.
https://en.wikipedia.org/wiki/Workflow_management_system

	WPS
	Web Processing Service
	WPS is an open standard to search and run processes with a simple web-based interface.
See: Wordcounter Example.

	WSGI
	WSGI is an interface specification by which server and application communicate.
http://wsgi.tutorial.codepoint.net/

	x509
	In cryptography, X.509 is an ITU-T standard for a public key infrastructure (PKI) and Privilege Management Infrastructure (PMI).
https://en.wikipedia.org/wiki/X.509

	XML-RPC
	It’s a spec and a set of implementations that allow software running on disparate operating systems, running in different environments to make procedure calls over the Internet.
http://xmlrpc.scripting.com/default.html

Useful Links

WPS Documentation

	What is WPS? [http://geoprocessing.info/wpsdoc/Concepts#what]

	WPS on OSGeo Live [http://download.osgeo.org/livedvd/doc-dev/standards/wps_overview.html]

	WPS tutorial [http://wiki.ieee-earth.org/Documents/GEOSS_Tutorials/GEOSS_Provider_Tutorials/Web_Processing_Service_Tutorial_for_GEOSS_Providers/Section_2:_Introduction_to_WPS]

	OGC Web Processing Service Standard [http://www.opengeospatial.org/standards/wps]

	PyWPS Wiki [http://wiki.rsg.pml.ac.uk/pywps/Main_Page]

	GeoServer tutorial [http://geoserver.geo-solutions.it/edu/en/wps/index.html]

Talks:

	The WPS 2.0 standard (preliminary information) [http://www.slideshare.net/Bender82/2014-0715the-wps-20-standardpreliminary?related=2]

	WPS Application Patterns [http://www.slideshare.net/nuest/wps-application-patterns?related=1]

	Using WPS (PyWPS) with Taverna Orchestration [http://www.slideshare.net/JorgeMendesdeJesus/taverna?related=2]

	Pywps a tutorial for beginners and developers [http://www.slideshare.net/JorgeMendesdeJesus/pywps-a-tutorial-for-beginners-and-developers?related=3]

	Zoo presentation foss4g.jp-2011 [http://www.slideshare.net/masarunarazaki/zoo-presentation-foss4gjp2011?related=4]

WPS Software

WPS Server Software:

	PyWPS

	GeoServer - http://docs.geoserver.org/stable/en/user/services/wps/index.html

	Zoo - http://www.zoo-project.org/

	COWS

	Deegree - http://www.deegree.org/

	52 North - http://52north.org/communities/geoprocessing/wps/

WPS Client Software:

	OWSLib Python Client

	OpenLayers WPS Plugin - http://dev.openlayers.org/docs/files/OpenLayers/WPSClient-js.html

	GeoTools WPS Module - http://docs.geotools.org/latest/userguide/unsupported/wps.html

	52 North Java Client - http://52north.org/communities/geoprocessing/wps/index.html

	52 North Javascript Client - http://geoprocessing.demo.52north.org:8080

	WPS Javascript Client by Boundless - https://github.com/boundlessgeo/wps-gui

QGIS Desktop GIS with wps plugins:

	http://www.qgis.org/en/site/

	http://plugins.qgis.org/plugins/wps/

	http://geolabs.fr/plugins.xml

uDig Desktop GIS with wps plugins:

	http://udig.refractions.net/

	https://udig.github.io/docs/user/reference/Using%20the%20WPS%20plugin.html

	https://github.com/52North/uDig-WPS-plugin (outdated)

WMS Software

WMS server:

	ncWMS2 - http://reading-escience-centre.github.io/edal-java/

	adaguc - http://adaguc.knmi.nl/

	sci-wms - http://sci-wms.github.io/sci-wms/

WMS clients:

	OpenLayers - http://openlayers.org/

	
	Leaflet - http://leafletjs.com/
	
	time dimension - http://apps.socib.es/Leaflet.TimeDimension/examples/

	GeoExt - http://geoext.github.io/geoext2/

Scientific Workflow Tools

Workflow Engines:

	Dispel4py

	RestFlow

	Taverna

	VisTrails

	Kepler - https://kepler-project.org/

	KNIME - http://www.knime.org/

Taverna with WPS:

	http://rsg.pml.ac.uk/wps/generic.cgi?request=GetCapabilities&service=WPS

	https://www.youtube.com/watch?v=JNAtoOejVIo

	https://taverna.incubator.apache.org/introduction/services-in-taverna.html

	https://github.com/myGrid/small-area-estimator

	http://comments.gmane.org/gmane.science.biology.informatics.taverna.user/1415

	http://dev.mygrid.org.uk/wiki/display/developer/SCUFL2

VisTrails with WPS:

	https://github.com/ict4eo/eo4vistrails

	http://proj.badc.rl.ac.uk/cows/wiki/CowsWps/CDOWPSWorkingGroup/WPSAndWorkflows

	http://www.kitware.com/source/home/post/105

Kepler with WPS:

	https://kepler-project.org/users/sample-workflows

Workflows with PyWPS:

	https://github.com/AnnaHomolka/PyWPS/blob/master/doc/tutorial_process_chaining.pdf

Other Workflow Engines:

	http://www.yawlfoundation.org/

	https://en.wikipedia.org/wiki/Scientific_workflow_system

	http://airavata.apache.org/

	http://search.cpan.org/~nuffin/Class-Workflow-0.11/

Scientific Python

	Anaconda - https://www.continuum.io/downloads

Completely free enterprise-ready Python distribution for large-scale
data processing, predictive analytics, and scientific computing

	pandas - http://pandas.pydata.org/

Python Data Analysis Library

Python in Climate Science

	OpenClimateGIS - https://earthsystemcog.org/projects/openclimategis/

OpenClimateGIS is a Python package designed for geospatial
manipulation, subsetting, computation, and translation of climate
datasets stored in local NetCDF files or files served through THREDDS
data servers. [..]

	ICCLIM (i see clim …) - https://github.com/cerfacs-globc/icclim

Python library for climate indices calculation.
Documentation at http://icclim.readthedocs.io/en/latest/

Python Web Frameworks and Utils

	Pyramid - http://www.pylonsproject.org/

	Authomatic - http://peterhudec.github.io/authomatic/

	Bootstrap - http://getbootstrap.com/

	Bootstrap Tutorial - http://www.w3schools.com/bootstrap/default.asp

	Deform - https://github.com/Pylons/deform

	Deform with Bootstrap demo - http://deform2demo.repoze.org/

	Colander - http://docs.pylonsproject.org/projects/colander/en/latest/index.html

	TinyMCE - https://www.tinymce.com/

	Font Awesome - http://fontawesome.io/

	Leaflet - http://leafletjs.com/

	Leaflet TimeDimension - http://apps.socib.es/Leaflet.TimeDimension/examples/

Example WPS Services

List of available Web Processing Services:

	Zoo WPS for PublicaMundi project - http://zoo.dev.publicamundi.eu/cgi-bin/zoo_loader.cgi?service=WPS&version=1.0.0&request=GetCapabilities

	GeoServer Demo WPS - http://demo.opengeo.org/geoserver/wps?request=GetCapabilities&service=WPS

	USGS Geo Data Portal- http://cida.usgs.gov/climate/gdp/process/WebProcessingService

	KNMI climate4impact Portal - http://climate4impact.eu//impactportal/WPS?request=GetCapabilities&service=WPS

	BADC CEDA - http://ceda-wps2.badc.rl.ac.uk/wps?request=GetCapabilities&service=WPS

	delatres - http://dtvirt5.deltares.nl/wps/?Request=GetCapabilities&Service=WPS

	52 North - http://geoprocessing.demo.52north.org:8080/52n-wps-webapp-3.3.1/WebProcessingService?Request=GetCapabilities&Service=WPS

	52 North - http://geoprocessing.demo.52north.org:8080/52n-wps-webapp-3.3.1-gt/WebProcessingService?Request=GetCapabilities&Service=WPS

	ZOO Demo WPS - http://zoo-project.org/cgi-bin/zoo_loader3.cgi?Request=GetCapabilities&Service=WPS

	British Antarctic Survey WPS for Meteorological Data - http://sosmet.nerc-bas.ac.uk:8080/wpsmet/WebProcessingService?Request=GetCapabilities&Service=WPS

	PyWPS Demo - http://apps.esdi-humboldt.cz/pywps/?request=GetCapabilities&service=WPS&version=1.0.0

Alternatives to WPS

	XML-RPC: Simple cross-platform distributed computing, based on the standards of the Internet. - http://xmlrpc.scripting.com/

	Swagger is a simple yet powerful representation of your RESTful API. - http://swagger.io/

Related Projects

	http://geopython.github.io/

	http://geonode.org/

	http://esgf.llnl.gov/

	http://climate4impact.eu/impactportal/general/index.jsp

	http://adaguc.knmi.nl/

	http://wps-web1.ceda.ac.uk/ui/home

	https://freva.met.fu-berlin.de/

	https://climate.apache.org/

References

This list [Schnase2016] has no claim to be complete.

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | X

A

 	
 	Anaconda

 	Anaconda cloud

 	
 	Anaconda Python distribution

 	Anaconda Server

B

 	
 	Binstar

 	
 	Bokeh

 	Buildout

C

 	
 	Catalog Service

 	CDO

 	cfchecker

 	Climate Data Operators

 	climate indice

 	
 	CMIP5

 	Conda

 	CORDEX

 	COWS

 	CSW

D

 	
 	Dispel4py

 	
 	Docker

 	Docker Hub

E

 	
 	Earth System Grid Federation

 	
 	Emu

 	ESGF

G

 	
 	GeoPython

 	GeoServer

 	
 	GitHub

 	Gunicorn

H

 	
 	Homebrew

I

 	
 	ICCLIM

 	
 	Indice Calculation CLIMate

L

 	
 	Linuxbrew

M

 	
 	Malleefowl

N

 	
 	NetCDF

 	
 	Nginx

O

 	
 	ocgis

 	OGC

 	Open Geospatial Consortium

 	
 	OpenClimateGIS

 	OpenID

 	OWSLib

P

 	
 	Phoenix

 	PyCSW

 	PyPi

 	
 	Pyramid

 	Python Package Index

 	PyWPS

R

 	
 	RestFlow

S

 	
 	Supervisor

T

 	
 	Taverna

 	
 	TDS

 	THREDDS

V

 	
 	VisTrails

W

 	
 	Web Mapping Service

 	Web Processing Service

 	WMS

 	
 	Workflow

 	Workflow Management System

 	WPS

 	WSGI

X

 	
 	x509

 	
 	XML-RPC

Example

Todo

This example with Flyingpigeon is outdated.

Data production

WPS is designed to reduce data transport and enables data processing close to the data archive.
Nevertheless, files are stored within birdhouse in a structured way.
For designing a WPS process or process chain, the location of input, output and temporary files are illustrated as follows:

[image: _images/filelocations.png]
Resources, which are already on the local disc system (output by other processes or as locally stored data archives),
are linked into the cache simply with a soft link to avoid data transport and disc space usage.

The locations are defined as follows:

	Resources: Any kind of accessable data such as ESGF, thredd server or files stored on the server-side disc system.

	Cache: ~/birdhouse/var/lib/pywps/cache/ The cache is for external data which are not located on the server side. The files of the cache are separated by the birds performing the data fetch and keep the folder structure of the original data archive. Once a file is already in the cache, the data will not be refetched if a second request is made. The cache can be seen as a local data archive. Under productive usage of birdhouse, this folder is growing, since all requested external data are stored here.

	Working directory: ~/birdhouse/var/lib/pywps/tmp/ Each process is running in a temporary folder (= working directory) which is removed after the process is successfully executed. Like the cache, the working directories are separated by birds. Resource files are linked into the directory.

	Output files: ~/birdhouse/var/lib/pywps/outputs/ The output files are also stored in output folders separated by the birds producing the files. In the case of flyingpigeon, you can get the paths with:

from flyingpigeon import config

output_path = config.output_path() # returns the output folder path
outputUrl_path = config.outputUrl_path() # returns the URL address of the output folder

And in some special cases, static files are used (e.g. html files to provide general information).
These files are located in the repository. In the case of flyingpigeon, they are located at: ./flyingpigeon/flyingpigeon/static/

and copied during the installation (or update) to: ~/birdhouse/var/www/

Designing a process

For designing a process it is necessary to know some basic concepts about how data are produced in birdhouse.
The following are some basic explanations to help in developing appropriate processes to provide a
scientific method as a service. The word process is used in the same sense as in the
OGC standard: for any algorithm, calculation or model that either generates new data or transforms some input data into output data,
and can be illustrated as follows:

[image: _images/process_schema_1.png]
The specific nature of web processing services is that processes can be described in a standardised way (see:
Writing a WPS process). In the flyingpigeon repository, the process descriptions are located in:

./flyingpigeon/flyingpigeon/processes

As part of the process description there is an execute function:

def execute(self):
 # here starts the actual data processing
 import pythonlib
 from flyingpigeon import aflyingpigeonlib as afl

 result = afl.nicefunction(indata, parameter1=argument1, parameter2=argument2)

 self.output.setValue(result)

It is a recommended practice to separate the functions (the actual data processing) from the process description.
This creates modularity and enables multiple usage of functions when designing several processes.
The modules in flyingpigeon are located here:

./flyingpigeon/flyingpigeon

Generally, the execution of a process contains several processing steps, where temporary files and memory values are generated.
Birdhouse runs each job in a separate folder, by default situated in:

~/birdhouse/var/lib/pywps/tmp/

This tmp folder is removed after job is successfully executed. To reuse temporary files, it is necessary
to declare them as output files. Furthermore, during execution, there are steps which are necessary
to be successfully performed and a result is called back. If this particular step fails, the whole process should exit with an appropriate error message, while in other cases it is not relevent for producing the final result. The following image shows a theoretical chain of functions:

[image: _images/module_chain.png]
In practice, the functions should be encapsulated in try and except calls and appropriate information
given to the log file or shown as a status message:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	from pywps.Process import WPSProcess
import logging
logger = logging.getLogger(__name__)

set a status message
self.status.set('execution started at : %s ' % dt.now(),5)

try:
 self.status.set('the process is doing something : %s ' % dt.now(),10)
 result = 42
 logger.info('found the answer of life')
except:
 msg = 'This failed but is obligatory for the output. The process stops now!'
 logger.error(msg)
 raise Exception(msg)

try:
 self.status.set('the process is doing something else : %s ' % dt.now(),20)
 interesting = True
 # or generate a temporary file
 logger.info(' Thanks for reading the guidelines ')
except:
 msg = 'This failed but is not obligatory for the output. The process will continue.'
 logger.debug(msg)

try:
 self.status.set('the process is doing something else : %s ' % dt.now(),20)
 interesting = True
 # or generate a temporary file
 logger.info(' Take your time to understand enverything ')
except:
 msg = 'This failed. The process will continue but writes out the reason of the failture'
 logger.exception(msg)

try:
 self.status.set('the process is doing something else : %s ' % dt.now(),20)
 interesting = True
 # or generate a temporary file
 logger.info(' This is the right way to do it ')
except:
 msg = 'Here comes a warning: Are you sure this is the right way to do it??'
 logger.warn(msg)

The log file then looks like:

tail -f ~/birdhouse/var/log/pywps/flyingpigeon.log

PyWPS [2016-09-14 11:49:13,819] INFO: Start ocgis module call function
PyWPS [2016-09-14 11:49:13,820] INFO: Execute ocgis module call function
PyWPS [2016-09-14 11:49:13,828] DEBUG: input has Lambert_Conformal projection and can not subsetted with geom
PyWPS [2016-09-14 11:49:13,828] DEBUG: failed for point ['2.356138', ' 48.846450'] Validation failed on the parameter "uri" with the message: Cannot be None
PyWPS [2016-09-14 11:49:13,993] INFO: Start ocgis module call function
PyWPS [2016-09-14 11:49:13,994] INFO: Execute ocgis module call function
PyWPS [2016-09-14 11:49:14,029] INFO: OcgOperations set
PyWPS [2016-09-14 11:49:14,349] INFO: tas as variable dedected
PyWPS [2016-09-14 11:49:14,349] INFO: data_mb = 0.0417938232422 ; memory_limit = 1660.33984375
PyWPS [2016-09-14 11:49:14,349] INFO: ocgis module call as ops.execute()
PyWPS [2016-09-14 11:49:16,648] INFO: Succeeded with ocgis module call function

Logging information is written to the logfile depending on the ‘log-level’ settings in ~/custom.cfg

Another point to think about when designing a process is the possibility of chaining processes together.
The result of a process can be a final result or be used as an input for another process.
Chaining processes is a common practice but depends on the user you are designing the service for.
Technically, for the development of WPS process chaining, here are a few summary points:

	the functional code should be modular and provide an interface/method for each single task

	provide a wps process for each task

	wps processes can be chained, manually or programmatically, to run a complete workflow

	wps chaining can be done manually, with workflow tools, direct wps chaining or with code scripts

	a complete workflow chain could also be started by a wps process.

[image: _images/wps_chain.png]
In birdhouse, restflow and dispel4py are integrated, and WPS chaining is used in the wizard of phoenix.
This WPS chain fetches data and runs a process (selected by the user) with the
fetched data : http://pyramid-phoenix.readthedocs.io/en/latest/user_guide.html#wizard

Here is a tutorial to follow: Chaining WPS processes.

or:

http://birdhouse.readthedocs.io/en/latest/appendix.html#scientific-workflow-tools

Frequently Asked Questions

	General Questions

	What is “birdhouse”?

	What is “WPS”?

	Getting Help

General Questions

What is “birdhouse”?

Birdhouse is collection of Python packages to make the usage of Web Processing Services (WPS) easy.
The available packages are used in the climate science community.

What is “WPS”?

	The very short answer
	WPS is the acronym for Web Processing Service.

	The sligthly longer answer
	So, let’s say you have a function (maybe written in Python) which might calculate the “summer days in Finland since 1990”. Then this function has probably input parameters (region, from-date, to-date, NetCDF files, …) and an output (or even more …) which might be just an integer number or a text document or even a nice diagram. Now, you would like to provide this function as a web service, so that other people can call it with just a simple URL like:

http://myhost/wps/identifier=summer_days®ion=finland&from=1990

… ok … then you should have a deeper look at this WPS thing.

Getting Help

Roadmap

Milestone December 2015

	prototype for wps security proxy [https://github.com/bird-house/twitcher/]

	update ncWMS2 and adagucserver wms [https://github.com/bird-house/birdhousebuilder.recipe.adagucserver]

	update sphinx with api references [https://github.com/bird-house/birdhousebuilder.recipe.sphinx]

	improved birdy command line (https, argcomplete) [https://github.com/bird-house/birdy]

	caching of wps requests

	deployment with docker using docker-compose

	minimal bird example and skeleton function [https://github.com/bird-house/babybird]

	unit tests with sample netcdf data

	wps decorator [https://github.com/bird-house/malleefowl/issues/16]

	enable wps for apache-climate [https://github.com/apache/climate] processes

	try sci-wms [https://github.com/sci-wms/sci-wms] web map service

Milestone March 2015

	move docs to readthedocs

	birdhouse overview

	presentation at LSDMA in Berlin

Long-term TODO List

Security

	using OAuth for login

	secure WPS service:

	wps client and services should not be changed

	using OAuth Token generation

	Token should be part of the url http://localhost/wps/emu/auhbgt3n or http://localhost/wps/emu?request=getcapabilities&token=auhbgt3n

	using a security proxy service in front of WPS servers.

	GetCapabilities and DescribeProcess should be available without a security token.

Data Sources

	OpenStack

	using python swift client

	PyCSW:

	already there but needs to be refactored

	CSW is used for publishing results

	ESGF/Thredds:

	opendap without aggregations (mostly not available)

	Observational Climate Data:

	which are available for public access and usage (license issuses)

	local file archives:

	make them searchable … pattern matching … index service …

	CERA climate database

	OGC data services like WCS and SOS, …

Web Processing Service

	usage of other WPS implementations: COWS, GeoServer, Zoo, …

	process integration interface (with python decorators) which generates the integration code for other WPS services.

	extensions: cancel (comes with wps 2.0), dry-run, … cows and maybe geoserver have some of these

	caching process execution: cows has cachings … but should be independent of the wps implementation

Deployment

	deployment with saltstack and/or docker …

Highload Processing

	integration of scheduler … slurm … (cows has an example for that)

	using load balancing …

Docs & Testing

	tests:

	improved unit tests

	continous integration with github + travisCI + binstar + docker

	complete install tests with docker builds

	complete sphinx documentation

	need a better overview of the components

	simple understable image of what WPS is good for

pavics-sdi

Power Analytics and Visualization for Climate Science - Spatial Data Infrastructure

Check out the official documentation [https://ouranosinc.github.io/pavics-sdi/].

 PAVICS is a research platform dedicated to climate analysis and visualization. It bundles
data search, analytics and visualization services. PAVICS is developped by Ouranos, CRIM and the `birdhouse`_ community and been funded by the CANARIE [http://www.canarie.ca/] research software program.

To get a sense of what the platform can do, check out our JupyterLab [https://pavics.ouranos.ca/jupyter] environment (login/passwd: public/public).

Documentation structure

We plan to build extensive documentation for PAVICS. We’re just getting started, but please provide your comments on our issue tracker [https://github.com/Ouranosinc/pavics-sdi/issues].

	Notebooks and tutorials provides step by step instruction on how to use PAVICS. Start here to get a feeling of what can be done.

	Developer Documentation explains how to install and configure the various components and run system tests.

	System Architecture describes the individual components of the system and how they work together.

	Processes documents all available processes on the PAVICS platform.

	Graphical User Interface walks you through the components of the web browser frontend.

Contents

	Tutorials
	Working with Web Processing Service with Python and OWSLib

	Notebooks

	Processes
	Basic climate data analysis

	Climate indicators

	Advanced climate data analysis

	Bias correction

	Using Workflows
	Workflow vocabulary

	Examples

	Workflow schema

	Graphical User Interface
	Using the graphical interface

	Developer Documentation
	Installation

	Load balancing

	Birdhouse service configuration

	VM configuration

	User and Group management

	GeoServer administration

	Data and service management

	Integration tests

	Building the docs

	Contributing

	System Architecture
	Overview

	Backend - PAVICS Node

	JupyterLab Interface

	Frontend

	Pavics-DataCatalog

	Provenance
	Ouranos deployment

	Support

	Release notes
	PAVICS-SDI

	License

	TODO

Indices and tables

	Index

	Module Index

	Search Page

License

Copyright (c) 2017, Ouranos, CRIM
All rights reserved.

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED “AS IS” AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Release notes

The pavics-sdi repository only holds the documentation. Although all the individual components of the PAVICS platform are open-source, the code configuring, deploying and linking these components together is in a private repository. We are planning to remove all sensitive material from this private repository so it can be made public. In the meantime, these release notes are the public facing information tracking the development of the platform.

PAVICS-SDI

1.2.x (2019-06-17)

	Deploy Raven, an hydrological modeling WPS server.

	Moving towards continuous, automated deployment.

	Better config templating.

	Fix for large http requests.

1.1.0 (2019-05-06)

	Adds a JupyterLab interface to the platform. Only a public user is supported.

1.0.0 (2019-03-20)

	Deploy Finch, a library of climate indicators.

	This is a production release, as the backend is considered stable enough to do some actual work.

1.0.0-beta (2017-11-29)

	First official release of the PAVICS Spatial Data Infrastructure system in time for the Canarie demo. Contains all elements from the statement of work, but the frontend does not provide a comfortable user experience. This release is not production ready.

Support

To report bugs, suggest improvements, or point to missing documentation, please post about them on our issue tracker [https://github.com/Ouranosinc/pavics-sdi/issues].

If you want to get in touch with a human, email us at pavics@ouranos.ca and we’ll be happy to help.

TODO

Todo

Describe the relationship between the frontend and Phoenix.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/_gitext/https_github_com_Ouranosinc_pavics_sdi_git/docs/source/arch/frontend.rst, line 25.)

Todo

Examine the Birdhouse/Birdhouse-Docs to see if this section can be merged back to it and joined as a submodule here. Birds of interest are listed there.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/_gitext/https_github_com_Ouranosinc_pavics_sdi_git/docs/source/dev/configuration.rst, line 166.)

Todo

How to add WPS, WMS, WFS servers to PAVICS.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/_gitext/https_github_com_Ouranosinc_pavics_sdi_git/docs/source/dev/data_management.rst, line 100.)

Todo

	Add images for the step-by-step processes

	How to modify the meta data associated with layers (how they appear in the interface)

	Add advice on setting styles with SLD4raster and other tools/advice

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/_gitext/https_github_com_Ouranosinc_pavics_sdi_git/docs/source/dev/geoserver.rst, line 69.)

Todo

Base PAVICS installation is incomplete. The following lines refer to Phoenix instance. Need to specify which birds are needed for a bare installation of PAVICS: Phoenix, FlyingPigeon, Malleefowl, Emu, etc.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/_gitext/https_github_com_Ouranosinc_pavics_sdi_git/docs/source/dev/installation.rst, line 59.)

Todo

Update the installation and config with security changes

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/_gitext/https_github_com_Ouranosinc_pavics_sdi_git/docs/source/dev/installation.rst, line 200.)

Todo

Document how to run integration tests

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/_gitext/https_github_com_Ouranosinc_pavics_sdi_git/docs/source/dev/integration_tests.rst, line 5.)

Todo

How authorizations for services work (the concept)
How to grant users access to data and services

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/_gitext/https_github_com_Ouranosinc_pavics_sdi_git/docs/source/dev/permissions.rst, line 25.)

Todo

Take a systematic approach and link to other birds and libraries through intersphinx

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/_gitext/https_github_com_Ouranosinc_pavics_sdi_git/docs/source/processes/index.rst, line 18.)

Todo

Review by CRIM.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/_gitext/https_github_com_Ouranosinc_pavics_sdi_git/docs/source/provenance/index.rst, line 20.)

Todo

Write tutorial on creating and launching workflows

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/_gitext/https_github_com_Ouranosinc_pavics_sdi_git/docs/source/tutorials/index.rst, line 10.)

Todo

Describe how to use the UI to add data to the workspace.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/_gitext/https_github_com_Ouranosinc_pavics_sdi_git/docs/source/tutorials/searching.rst, line 7.)

Todo

Guideline to write tests. Look at the Emu [http://emu.readthedocs.io/en/latest/] to see examples.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/dev_guide.rst, line 113.)

Todo

explanation of enabling spinx automatic api documentation.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/dev_guide.rst, line 128.)

Todo

Add PEP8 instructions for more editors: PyCharm, Kate, Emacs, Vim, Spyder.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/dev_guide.rst, line 211.)

Todo

How to create a conda package

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/dev_guide.rst, line 217.)

Todo

This example with Flyingpigeon is outdated.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/example.rst, line 4.)

Todo

needs to be updated.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/overview.rst, line 55.)

Todo

Add references to OGC testbed.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/projects.rst, line 36.)

Todo

The WPS tutorial needs to be updated.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/tutorial/wps.rst, line 6.)

Todo

birdy example

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/user_guide.rst, line 22.)

Todo

Screen-shot of Phoenix

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/birdhouse/checkouts/release-oxford/docs/source/user_guide.rst, line 27.)

Pavics-DataCatalog

PAVICS-SDI bundles a number of cataloguing services that allow users to search for and add data to its backend catalog service.

The main cataloguing component within the PAVICS-SDI architecture is PAVICS-DataCatalog [https://www.github.com/ouranosinc/PAVICS-DataCatalog/], a service that identifies and enables querying of CF-compliant [http://cfconventions.org/] climate data organized within THREDDS Data Servers. PAVICS-DataCatalog is built with the Apache Solr [https://lucene.apache.org/solr/] search platform.

PAVICS Catalogue Search

The pavicssearch service closely mimics the API for the Earth System Grid Federation (ESGF) search. The search fields (or facets) include author, category, cf_standard_name, experiment, frequency, institute, model, project, source, subject, title, units, variable and variable_long_name. The search results are returned in a json file and include the URL to download the file or access it through DAP.

Examples

The following request will launch the crawler on the server filesystem to catalog available data:

http://localhost:8009/pywps?service=WPS&request=execute&version=1.0.0&identifier=pavicrawler&storeExecuteResponse=true&status=true&DataInputs=

The following request will search for all files that are part of the RCP8.5 experiment and based on the CRCM4 model:

http://localhost:8009/pywps?service=WPS&request=execute&version=1.0.0&identifier=pavicsearch&DataInputs=constraints=model:CRCM4,experiment:rcp85

Credits

PAVICS-DataCatalog is developed by researchers at CRIM and Ouranos.

Frontend

[image: An example of the PAVICS-frontend in action]
The PAVICS-frontend (GitHub Repository [https://github.com/Ouranosinc/PAVICS-frontend]) is the custom graphical interface for users to leverage the services offered by the platform. It provides a map interface to display both gridded climate data and geospatial layers, launch services and workflows and monitor the progress and status of user’s jobs. It also provides limited capacity to dynamically interact with datasets. Users can create projects that store datasets, workflows and outputs for future use.

The frontend is written with the React.js library and interacts with the backend through API calls to REST and WPS services.

Gridded data rendering

A core component of the frontend is the gridded data renderer. Gridded netCDF datasets selected for visualization are displayed on the base map using ncWMS [https://reading-escience-centre.github.io/ncwms/], a server capable of converting multidimensional netCDF data into images. The frontend sends GetMap requests to the ncWMS server according to the display’s bounding box and zoom level. These requests are handled by OpenLayer and its plugins.

The conversion from the raw netCDF data to an image requires a mapping between data values and a colorbar. The color scale can be selected from a menu and its min and max values modified by the user. The color scale information is sent to ncWMS to render the data into an image.

The colorbar palette is displayed as an image, provided as the response to a GetLegendGraphic request to ncWMS.

For high resolution data, rendering suffers from lag that can make browsing netCDF files a frustrating experience. We are investigating options to reduce delivery latency.

Take a look at the frontend tutorial for information on the frontend’s usage!

Todo

Describe the relationship between the frontend and Phoenix.

System Architecture

	Overview
	Credits

	Backend - PAVICS Node
	Data storage

	Indexation

	Climate Analytic Processes with Birdhouse

	Authentication and authorization

	Gridded data visualization

	JupyterLab Interface

	Frontend
	Gridded data rendering

	Pavics-DataCatalog
	PAVICS Catalogue Search

	Examples

	Credits

JupyterLab Interface

A JupyterLab [https://jupyterlab.readthedocs.io/en/stable/] instance runs on the PAVICS server at pavics.ouranos.ca/jupyter. The intent is not to run production code, but rather to demo the backend services available from a programming environment. The Python 3 engine has a number of libraries pre-installed, making it easy to experiment with web processing services and netCDF files.

Users should connect with the public login and the public password. User accounts will be available at a later time. Meanwhile, save your work elsewhere, because the user-created notebooks will be erased periodically.

A number of tutorial notebooks are available in the public directory to give a sense of how services can be used in scientific workflows. These notebooks are tested daily against the production server.

Overview

[image: ../../../../../_images/PAVICS_overview.png]
PAVICS is a Spatial Data Infrastructure (SDI) for climate data. It is composed of modular components that together provide access to data and a library of climate services. It is meant to facilitate climate data analysis for both researchers and climate service providers. PAVICS is not intended to be installed on individual computers, but rather on servers located close to data archives.

There are multiple building blocks composing the PAVICS SDI:

	Birdhouse
	Web Processing Services (WPS) supporting data processing in the climate science community. It includes multiple sub-components:

	Birdhouse/Finch
	A library of climate indicators.

	Birdhouse/Flyingpigeon
	Climate services including indices computation, spatial analogs, weather analogs, species distribution model, subsetting and averaging, climate fact sheets, etc.

	Birdhouse/Malleefowl
	Access to ESGF data nodes and THREDDS catalogs, workflow engine.

	Birdhouse/Hummingbird
	Climate Data Operators (CDO) and compliance-checker for netCDF files.

	Raven
	A WPS server for hydrological modeling, calibration, regionalization of ungauged basins and time series analysis.

	JupyterLab
	A notebook interface to demonstrate how WPS services can be used from a programming environment.

	PAVICS-frontend
	The user interface (UI) handling user accounts, workspace, workflows and data visualization. Development of the UI has paused as it consumed a lot of resources, consider it as a prototype.

	PAVICS-DataCatalog
	Storing and serving information about available climate data.

	Magpie
	Authentication and authorization services.

	THREDDS
	netCDF data server.

	GeoServer
	Geospatial data server.

These components work together to offer users a seamless access to data and a suite of services that can convert raw climate data into useful information, graphics and tables.

Credits

PAVICS is led by Ouranos [https://www.ouranos.ca/en/], a regional climatology research consortium, and CRIM [http://www.crim.ca/fr], an informatics and software research institute, (both located in Montreal, Quebec, Canada) to provide climate scientists with a set of tools to acquire and analyze climate data. The project was funded by the CANARIE research software program.

Building the docs

To build the docs, grab a copy of the pavics-sdi [https://github.com/Ouranosinc/pavics-sdi.git] repository on github:

git clone https://github.com/Ouranosinc/pavics-sdi.git

This is the repository presently storing the comprehensive documentation for the PAVICS platform. Because PAVICS processes are documented using the autoprocess directive, you’ll also need to install a few other packages that contribute services for documentation to

git clone https://github.com/Ouranosinc/flyingpigeon.git
cd flyingpigeon
git checkout pavics
make clean install
cd ..

git clone https://github.com/Ouranosinc/malleefowl.git
cd malleefowl
make clean install
cd ..

git clone https://github.com/bird-house/hummingbird.git
cd hummingbird
make clean install
cd ..

There are other requirements (sphinx and a few extensions) that can be installed using pip in Python (2 or 3):

pip install -r requirements.txt

After installing these libraries, you should be able to build the docs without errors:

cd pavics-sdi/docs
mkdir source/_static
make html

Publishing the docs online

If you have write permissions to pavics-sdi [https://github.com/Ouranosinc/pavics-sdi.git], you can also deploy the html online [https://ouranosinc.github.io/pavics-sdi/].
To do so for the first time, create a new directory next to the pavics-sdi directory and clone the repo into an html directory:

mkdir pavics-sdi-docs
cd pavics-sdi-docs
git clone git@github.com:Ouranosinc/pavics-sdi.git html

Then enter html, checkout the gh-pages branch and enter some voodoo incantations:

cd html
git checkout gh-pages
git symbolic-ref HEAD refs/heads/gh-pages # auto-switches branches to gh-pages
rm .git/index
git clean -fdx

You’ll also need to add a .nojekyll file to make sure the stylesheets are loaded on github.io:

git add .nojekyll
git commit -m 'added .nojekyll'
git push

You should then be able to go back to pavics-sdi/docs and run make gh-pages, which will build the html docs, copy them to the pavics-sdi-docs just created and push them to the github gh-branch:

make gh-pages

For more details, see the original instructions [https://daler.github.io/sphinxdoc-test/includeme.html].

Translations

pavics-sdi [https://github.com/Ouranosinc/pavics-sdi.git] is also being translated to French, and it’s possible to add other languages. For example to add a German translation, run sphinx-intl from the docs/ directory with the de locale:

sphinx-intl update -p build/locale -l de

This will create a locale/de/LC_MESSAGES folder storing .po files.

Translators will then be able to edit those .po files to translate the documentation content. Once that’s done, the documentation can be compiled using:

make -e SPHINXOPTS="-D language='de'" html

A make command to build the french documentation has been created to facilitate building:

make html_fr

When the source documentation in english changes and the translation needs to be updated, run:

sphinx-intl update -p build/locale

edit the .po files and rebuild the documentation.

Birdhouse service configuration

All birdhouse components are deployed and configured using the following methods:

	Run docker-compose on a docker-compose.yml config file to launch a group of containers using their images and some options.

	When a container is starting a make call with the target update-config and start is done (specified by the dockerfile CMD statement)

	The update-config target update the container application config using buildout and the custom.cfg config file

	The start target launch the application using supervisor

To customize the container application config we must also update the custom.cfg file used by the buildout recipe of each container.

	Since custom.cfg is built into the docker image and thus reset each time we run an image the only way to alter it is to mount a host file inside the container using the volume option. Therefore a custom.cfg is configured on host for each birdhouse component and mounted inside the container using the volume option of the docker-compose.yml file. This way each time a container is started, it is configured by the host custom.cfg file which indeed persist the lifecycle of a container

	The custom.cfg is a buildout configuration file which extends buildout.cfg providing default parameters. Each birdhouse component has it’s own buildout recipe looking for particular parameters to configure their application.

Note

An exemple recipe for ncWMS configuration can be found here: https://github.com/bird-house/birdhousebuilder.recipe.ncwms. Look on github for other components recipe : https://github.com/bird-house.

Hummingbird

For more information on Hummingbird, see the Hummingbird-Birdhouse documentation [https://birdhouse-hummingbird.readthedocs.io/en/latest/].

Warning

First try at running CDO operation using the Hummingbird WPS (with url for input NetCDF file, only seems to work with the fileserver, not OPeNDAP), e.g. : http://132.217.140.31:8092/wps?service=WPS&version=1.0.0&request=Execute&identifier=cdo_operation&DataInputs=dataset=http://192.168.101.175:8083/thredds/fileServer/birdhouse/nrcan/nrcan_canada_daily/nrcan_canada_daily_pr_1960.nc;operator=monmax returns “PyWPS Process cdo_operation successfully calculated”. However the output points to a NetCDF file on localhost (http://localhost:38092/wpsoutputs/hummingbird/output-4f80cb02-58db-11e6-8a37-533b457038a6.nc). Need to substitute localhost for the ip (132.217.140.31) and keep the same port : http://132.217.140.31:38092/wpsoutputs/hummingbird/output-4f80cb02-58db-11e6-8a37-533b457038a6.nc Previous note: the same operation with the command-line, and using the OPeNDAP link (i.e. >> cdo monmax http://132.217.140.31:8083/thredds/dodsC/birdhouse/nrcan/nrcan_canada_daily/nrcan_canada_daily_pr_1960.nc output.nc) succeeds, in ~3 minutes. It is much faster if the file is local. This brings up the question of whether we should pass the catalogue url when we know the file is actually on a local machine… Trying to execute the same process via our Phoenix installation is not possible. The execute button remains greyed out after entering an url and selecting an operator.

Phoenix

Note

The Phoenix service requires a valid ssl certificate and key prior to running docker-compose in order to make use of HTTPS. In the docker-compose.yml file, within the phoenix/volumes configuration, set the environment variable SSL_CERTIFICATE to a valid certificate. This certificate file should contain both the CERTIFICATE and PRIVATE KEY parts as required by the nginx “ssl_certificate_key” and “ssl_certificate” parameters.

For more information on Phoenix, see the Pyramid-Phoenix documentation [https://pyramid-phoenix.readthedocs.io/en/latest/].

/config/phoenix/custom.cfg

[settings]
User: admin, Password: querty
phoenix-password = sha256:...

To change password get into the phoenix running container and use make passwd. This will update the persistant host custom.cfg with the new password hash.
If an error about missing IPython.lib occurs install ipython [https://ipython.org] like this:

source $ANACONDA_HOME/bin/activate birdhouse
pip install ipython

Phoenix still requires manual configuration in order for Solr to correctly index the THREDDS catalog:

	Go to https://<platform_url>:8443/

	Click on the login button [image: login]

	Use the admin phoenix access with ‘querty’ password:

[image: ../../../../../_images/phoenix_username.png]

	Go to the settings page [image: settings]

	Click on the [image: service] button:

[image: ../../../../../_images/phoenix_services.png]

	Register a new service:

[image: ../../../../../_images/phoenix_register.png]

	Fill the form using the thredds catalog url (use the OpenStack internal IP), a service name of your choice and be sure to check the Thredds Catalog service type :

[image: ../../../../../_images/phoenix_register_thredds.png]

	Click on the register button

	Go to the Solr settings page by repeating the steps 4 and 5 but this time using the Solr button.

[image: ../../../../../_images/phoenix_solr.png]

	Use the Parameters tab and increase the crawling depth to match the deepest catalog depth :

	Activate the crawling in the Thredds Services tab by clicking on the toggle button near the + symbol.

[image: ../../../../../_images/phoenix_thredds_activate.png]

	The status should turn to green when you click on the refresh button.

ncWMS

/config/ncwms2/custom.mfg

[settings]
tomcat-ncwms-password = <enter ncwms password>

[ncwms]
data_dir = /pavics-data

Manual setup of the running docker

To access the ncWMS admin page (changes be overriden each time the container is restarted), edit the file: /opt/conda/envs/birdhouse/opt/apache-tomcat/conf/tomcat-users.xml and remove the comment block around the manager-gui and ncWMS-admin role.
The administration page allow administrators to add new datasets but again it will not persist upon container restarting.

Default Tomcat credentials:

username="birdhouse"
password="4FO72WcTt7K9gYiNKApf"

Default ncWMS credentials:

username="admin"
password="ju68hfld"

Dynamic services

Warning

The dynamic services section allow with only one command to enable access to all the database available at M:data16projetsmultiPAVICSdata by configuring a file system entrypoint. The only thing to do is to use the following url: http://<domain>:8080/ncWMS2/wms?SERVICE=WMS&REQUEST=GetCapabilities&VERSION=1.3.0&DATASET=outputs/<path> and replace <path> by the relative path to M:data16projetsmultiPAVICSdata to the required dataset. So thanks to this config and to the catalog service we should be able to get the entire database list from the catalog and access their WMS by using the relative path in the wms url.

THREDDS

[thredds]
data_root = /pavics-data
allow_wcs = true
allow_wms = true

PAVICS-DataCatalog

In the catalog.cfg file:
* Provide the solr and THREDDS host.
* Set the wps host to the server that will be exposing the catalog (this is the server where wps temporary output files will be saved).
* Set the WMS alternate server if desired.

Magpie

FlyingPigeon

Emu

Other Birds?

Todo

Examine the Birdhouse/Birdhouse-Docs to see if this section can be merged back to it and joined as a submodule here. Birds of interest are listed there.

Contributing

Benchmark development environment

For debugging and editing purposes, PAVICS should be set up on a virtual machine. We recommend installing the Oracle VM VirtualBox with Extensions [https://www.virtualbox.org/wiki/Downloads] and creating a VM with the following base specifications:

	AMD64 Ubuntu Linux 16.04 Long-Term-Support (LTS) (via Ubuntu Downloads [https://www.ubuntu.com/download/desktop])

	> 8 GB RAM

	> 70 GB Storage

	> 2 CPUs

	Network bridge access

	Install VBoxGuestAdditions within the Ubuntu guest for corresponding
VirtualBox version. This can be done via the Devices tab of the VM via the Insert Guest Additions ISO image… and following the install instruction from the autorun.sh script.

Required VM packages for various PAVICS components (most can be installed via apt-get with root privileges):

	python-dev

	curl or wget

	git

	docker.io

	docker-compose

Setting up PyCharm

Note

For missing python modules: https://www.jetbrains.com/help/pycharm/installing-uninstalling-and-upgrading-packages.html

The PAVICS back-end relies on developmental builds based on the Open Geospatial Consortium Web Processing Services. To install these libraries in your working environment, run the following within your PyCharm console:

import pip
pip.main(['install', 'https://github.com/geopython/pywps/archive/7cab3866e34ce24d3df56e3c1c546739b1cda2d7.zip'])
pip.main(['install', '--upgrade', '--force-reinstall', 'https://github.com/bird-house/OWSLib/archive/pingudev.zip'])

Warning

Some packages are not happy with Python wheel, try uninstalling it if all else fails.

Launching individual local components

Solr

docker pull pavics/solr
docker run --name my_solr -d -p 8983:8983 -t pavics/solr

Check that Solr is running at http://localhost:8983/solr/#/birdhouse

Public THREDDS

git clone https://github.com/Ouranosinc/PAVICS.git
cp PAVICS/birdhouse/templates/docker-compose.override.public_thredds.yml PAVICS/birdhouse/docker-compose.override.yml

In this new docker-compose.override.yml change ${PATH_TO_LOCAL_NETCDF_FILES}
to an actual path on disk with NetCDF files.

docker-compose up -d thredds

Check that thredds is running at http://localhost:8083/thredds/

Secure THREDDS (HTTPS)

First you will need a self-signed certificate:

openssl req -x509 -nodes -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365

This will ask for various inputs that may be left blank.

cat key.pem >> cert.pem

cert.pm is your self-signed certificate.

git clone https://github.com/Ouranosinc/PAVICS.git

Switch to PAVICS/birdhouse directory.

./set_hostname.sh dummy

Add this dummy hostname to /etc/hosts

127.0.0.1 dummy.crim.ca

Either set SSL_CERTIFICATE to the location of cert.pem and HOSTNAME to
dummy.crim.ca or use the template docker-compose_shorcut.sh and set those
values in it (here renamed to mycompose.sh).

cp PAVICS/birdhouse/templates/docker-compose.override.local_https_thredds.yml PAVICS/birdhouse/docker-compose.override.yml

In this override file specify the path to local netcdf files and set
localhost IP.

./mycompose.sh up -d thredds proxy magpie twitcher

It may take a minute for twitcher to get online. If it does not
respond after a while, try to restart everything once or twice.

./mycompose down
./mycompose.sh up -d thredds proxy magpie twitcher

Check that twitcher is running at https://localhost/twitcher/ (returns hello)

Check that magpie is running at https://localhost/magpie/

Check that thredds is running at https://localhost/twitcher/ows/proxy/thredds/

Play around with magpie permissions to check that the security is working

HTTPS custom WPS service

Follow all the steps of the HTTPS THREDDS setup above up to the
template copy, instead use:

cp PAVICS/birdhouse/templates/docker-compose.override.local_https_wps.yml PAVICS/birdhouse/docker-compose.override.yml

In this override file, set the localhost IP, then you can switch the
wpsandbox image for the wps service image of your choice and assign it
an available port of your choice. Then assign a corresponding port to
the proxy. A new proxy configuration file need to be added to
PAVICS/birdhouse/config/proxy/conf.d/wpsandbox.conf for this service,
e.g.:

server {
 listen 8081;
 location / {
 proxy_pass http://wpsandbox;
 }
}

./mycompose.sh up -d proxy magpie twitcher wpsandbox

It may take a minute for twitcher to get online. If it does not
respond after a while, try to restart everything once or twice.

./mycompose down
./mycompose.sh up -d thredds proxy magpie twitcher

Check that twitcher is running at https://localhost/twitcher/ (returns hello)

Check that magpie is running at https://localhost/magpie/

Register the new wps service in magpie: In Home > Edit Services >
wps > Add Service. In our case the name is wpsandbox and the public
url is https://dummy.crim.ca/twitcher/ows/proxy/wpsandbox with the wps
service type. Then edit this new service Protected URL to
http://dummy.crim.ca:8081

Alternatively, this can be entered in
PAVICS/birdhouse/config/magpie/providers.cfg

Check that the wps is running at https://localhost/twitcher/ows/proxy/wpsandbox/pywps?service=WPS&version=1.0.0&request=GetCapabilities

Play around with magpie permissions to check that the security is working

PAVICS-DataCatalog development

git clone https://github.com/Ouranosinc/PAVICS-DataCatalog.git
cd PAVICS-DataCatalog
cp catalog.cfg ~/catalog.cfg

Edit ~/catalog.cfg with Solr address. Note that within docker, localhost
is not the same as the workstation localhost, so the address must use the ip
of the local machine (retrieve with, e.g., ifconfig). Also point to a
valid thredds server.

Docker requires root privileges
sudo su
docker build -t pavics-datacatalog .
docker run --name pavics-datacatalog1 -d -v ~/catalog.cfg:/home/catalog.cfg -p 8009:80 pavics-datacatalog

Check that the wps is running at http://localhost:8009/pywps?service=WPS&request=GetCapabilities&version=1.0.0

Note that when running with magpie, the root directory of thredds does not
properly redirect to the proxy. To crawl a thredds server with threddsclient,
provide the birdhouse root directory of thredds (e.g. in catalog.cfg):

https://localhost/twitcher/ows/proxy/thredds/catalog/birdhouse

Flyingpigeon development

git clone https://github.com/Ouranosinc/flyingpigeon.git
cd flyingpigeon
git checkout pavics

Need to either add a custom.cfg or modify profiles/base.cfg with:

[settings]
geoserver = http://host:port/geoserver/wfs

Then proceed with installation:

make clean install
make test
make start

The WPS will be running at:

http://localhost:8093/wps?service=WPS&version=1.0.0&request=GetCapabilities

To restart flyingpigeon (e.g. after modifications):

make stop
make start

Malleefowl development

git clone https://github.com/Ouranosinc/malleefowl.git
cd malleefowl
git checkout pavics

Need to either add a custom.cfg or modify profiles/base.cfg with:

[settings]
persist-path = /tmp
archive-root = /

Then proceed with installation:

make clean install
make test
make start

The WPS will be running at:

http://localhost:8091/wps?service=WPS&version=1.0.0&request=GetCapabilities

Data and service management

The PAVICS project Data Server is built around a Thematic Real-time Environmental Distributed Data Service (THREDDS). This service allows for real-time collection and presentation of archived data and metadata using remote access protocols to bridge the gap between data providers and researchers.

The THREDDS Project is an Open Source initiative maintained by UCAR’s Unidata Program. For more information on Unidata, see the Project Home Page [https://www.unidata.ucar.edu/]. To learn more about THREDDS, view the Project Description [https://github.com/Unidata/thredds/] on GitHub.

To better understand the way THREDDS integrates within PAVICS, see the System Architecture Overview.

NetCDF file management in THREDDS

Data preparation for inclusion in the platform

NetCDF files integrated in the PAVICS platform must follow the CF Conventions
document: http://cfconventions.org/

In order to benefit from the search engine capabilities, typical global
attributes should be set. Currently the platorms searches the following
fields:

project
institute
model
experiment
frequency

For variables, the standard_name and units should follow the CF standard name
table: http://cfconventions.org/standard-names.html

It is recommended to provide a dataset_id as a global attribute
in each NetCDF file that is unique for each collection of files that constitute
a timeseries.

NetCDF files with multiple variables are presently not fully supported.

Adding files

NetCDF files can be manually added to the THREDDS Data Server by copying them to the directory used as a docker volume in docker-compose.yml (see Installation).

In order for new files to be catalogued, the Solr and PAVICS-DataCatalog components must be running and pavicrawler must be run:

replace localhost and port number with your PAVICS-DataCatalog deployment address
http://localhost:8086/pywps?service=WPS&request=execute&version=1.0.0&identifier=pavicrawler&storeExecuteResponse=true&status=true&DataInputs=

Note that this crawls the whole THREDDS server and can take a very long time. In order to partially crawl the THREDDS server, use:

http://localhost:8086/pywps?service=WPS&request=execute&version=1.0.0&identifier=pavicrawler&storeExecuteResponse=true&status=true&DataInputs=target_thredds=https://thredds_host.com/twitcher/ows/proxy/thredds/catalog/birdhouse/subpath/to/crawl

It is possible to restrict the crawling even more from the specified THREDDS path with the target_files argument to pavicrawler.

Note

The pavicrawler scans for typical attributes (mostly defined by CMIP) in the NetCDF global attributes. This allows search by facets by other components of the platform.

After running the pavicrawler, new entries in the catalog should appear in Solr:

http://localhost:8983/solr/#/birdhouse/query
must Execute Query, with relevant search criteria, or by increasing rows to get more results

By default, the dataset_id will be made up of the relative path on the thredds
server.

Inspecting metadata

An essential requirement for a functional platform is that netCDF data stored in THREDDS has complete and uniform
metadata. To do so, the pavics.catalog.thredds_crawler() function can be used to extract the metadata from the
netCDF files and see if there are missing entries:

from pavics.catalog import thredds_crawler as crawler
crawler('http://pavics.ouranos.ca/thredds', index_facets=['project'], exclude_files=['birdhouse/wps_outputs', 'birdhouse/workspaces'])

Note that running this command can take a long while, so the include_files argument can be passed to restrict the
crawler to certain directories, such as birdhouse/ouranos/climex/.

Birdhouse Solr

The birdhouse solr uses deduplication
(http://wiki.apache.org/solr/Deduplication) on the fields “source” and “url”.
Essentially the id is a hash of the combination of those fields. This is
defined in solrconfig.xml
(e.g. https://github.com/bird-house/birdhousebuilder.recipe.solr/blob/master/birdhousebuilder/recipe/solr/templates/solrconfig.xml)

THREDDS Data Server example

An example of a public THREDDS Data Server can be found here:
https://data.nodc.noaa.gov/thredds/catalog.html

Adding external services

Todo

How to add WPS, WMS, WFS servers to PAVICS.

Using thredds_crawler

Test code

from thredds_crawler.crawl import Crawl
Crawl('https://pavics.ouranos.ca/thredds/birdhouse/ouranos/climex/catalog.xml')
Crawl('https://pavics.ouranos.ca/thredds/catalog/birdhouse/ouranos/climex/QC11d3_CCCma-CanESM2_rcp85/day/historical-r1-r1i1p1/tasmin/catalog.xml')

GeoServer administration

Before you begin

We strongly encourage that you create a Workspace. For more information on Workspaces and the data structure of GeoServer, refer to the official GeoServer Online Documentation [http://docs.geoserver.org/stable/en/user/data/webadmin/workspaces.html].

Adding data to GeoServer

There are two possible methods for loading data sets into a store in GeoServer: using SCP/SSH or with QGIS GeoServer Explorer. Both require write access credentials to the GeoServer Administrator panel. Employing SCP/SSH is a more manual method and requires more configuration from within the GeoServer Administration portal while the QGIS GeoServer Explorer can save some time and provide an instantaneous result with less time spent setting layer properties.

The SCP/SSH method

Note

You must have write access permissions to the server-side GeoServer filesystem.

Folders can be loaded with vector and raster data in many formats and can be stored in the same parent folder.

	Begin by tunneling into the server:

ssh user@server

	Determine where the GeoServer data folder exists on your server. Navigate to this directory and create a new folder that will contain your new data sets:

mkdir GeoServer/DATASETS

	On your local terminal, navigate to your directory containing your data and run scp on the folder recursively:

scp -pr localdata user@server:/PATHTO/GeoServer/DATASETS/

	Login to the GeoServer Administration Panel and click on Stores in the sidebar.

	Click on Add new Store

	Specify the type of data you are adding (e.g. Shapefile, GeoTIFF, PostGIS DB, etc). Each option will allow you to load one such file at a time. If you already have a Workspace, you can specify to associate the data with it. If you are adding several Shapefiles, select the option for Directory of Shapefiles.

For more information on the Data Adding process from the GeoServer Administration Panel, see the GeoServer documentation [http://docs.geoserver.org/stable/en/user/gettingstarted/shapefile-quickstart/index.html].

Note

Click the Enabled box or uploaded layers won’t be available!

The QGIS GeoServer Explorer method

Note

You must have a working installation of QGIS (2.14.x, 2.18.x) and access to the QGIS Plugin Manager. QGIS is multi-OS and available at QGIS.org [https://qgis.org/en/site/].

Note

At the time of this writing, the newest point release of QGIS (3.0.x) does not support the QGIS GeoServer Explorer

	From the QGIS window menu, select Plugins then Manage and Install Plugins. From the plugin list, find “GeoServer Explorer” and click Install Plugin.

	Open your data layers in QGIS and name them accordingly.

	From the Web menu tab, select GeoServer Explorer and a new window will pop-up or appear below the processing toolbox.

Styling data layers

Todo

	Add images for the step-by-step processes

	How to modify the meta data associated with layers (how they appear in the interface)

	Add advice on setting styles with SLD4raster and other tools/advice

Developer Documentation

	Installation
	Deployment methods

	PAVICS and Dockerhub images

	PAVICS installation with docker-compose

	Updating containers to the latest version

	Resetting Bird services

	Restarting Bird services

	Port specification

	Load balancing
	Modifying the docker-compose.yml

	Birdhouse service configuration
	Hummingbird

	Phoenix

	ncWMS

	Manual setup of the running docker

	Dynamic services

	THREDDS

	PAVICS-DataCatalog

	Magpie

	FlyingPigeon

	Emu

	Other Birds?

	VM configuration
	Data volumes

	Docker volume

	Automount

	Hostname resolution

	User and Group management
	Adding Users and Groups to PAVICS server

	User and Group management for Bird services

	GeoServer administration
	Before you begin

	Adding data to GeoServer

	Styling data layers

	Data and service management
	NetCDF file management in THREDDS

	Birdhouse Solr

	THREDDS Data Server example

	Adding external services

	Using thredds_crawler

	Integration tests

	Building the docs
	Publishing the docs online

	Translations

	Contributing
	Benchmark development environment

	Setting up PyCharm

	Launching individual local components

Installation

Note

PAVICS is built to work within POSIX and POSIX-like systems (e.g. Unix/Linux). For Windows users who want to administer a PAVICS data server, you may need to either install PuTTY [https://www.chiark.greenend.org.uk/~sgtatham/putty/], a Unux/Linux virtual machine or use a POSIX API environment like the Windows Subsytem for Linux [https://docs.microsoft.com/en-us/windows/wsl/about] or Cygwin [https://cygwin.com/] to interface with the PAVICS server system.

Deployment methods

PAVICS can be installed from source on GitHub [https://www.github.com/Ouranosinc/pavics-sdi/] or by using Docker [https://www.docker.com/what-docker]. Git/Github is a versioning software and platform that can fetch development branches of pavics while Docker is a virtualization tool for running isolated service images built with specific library environments. Depending on your needs and interests (e.g. debugging vs deploying) either platform may suit your needs.

Proposing changes to PAVICS or Contributing requires free a GitHub account [https://github.com/join] but anyone can download the source code for PAVICS withour registering. Git is normally in most standard Linux software repositories and can be installed (using Debian/Ubuntu-based systems) with the following:

Enable root access
sudo su

Updating software catalogues and and installed libraries
apt-get update; sudo apt-get upgrade

Installing git will also install dependent libraries
apt-get install -y git

Configuring git for code commits using your user credentials
exit # Leave superuser
git config --global user.name "Your Name"
git config --global user.email "youremail@domain.com"

For Docker installations, begin by following the guide for installing Docker Community Edition on your home machine from the Docker Installation Page [https://docs.docker.com/install/]. Docker Community Edition is a set of command line tools for creating and launching container-based applications.

Depending on your Linux distribution, you can either download and launch the installer directly or you may need to add a new ppa/apt/yum/dnf/etc. software repository to your system to install the most recent version. For Debian/Ubuntu-based systems:

Enable root access
sudo su

Install base library requirements
apt-get install -y apt-transport-https ca-certificates wget software-properties-common

Install the Docker suite of tools
apt-get install -y docker docker.io docker-engine

For users not using Linux, refer to the following installation guides for Mac OS [https://docs.docker.com/docker-for-mac/] and for Windows [https://docs.docker.com/docker-for-windows/].

PAVICS and Dockerhub images

All code produced for the PAVICS project is Open Source and hosted publicly through GitHub repositories. Among our members/users, the preferred method for packaging and deployment relies on Docker images. As such, we use the Docker Image building and hosting features of DockerHub [https://hub.docker.com/]. This feature automatically builds a new image for all major releases to the GitHub repository, for all repositories that include a Dockerfile. The resulting images [https://hub.docker.com/u/pavics/] are all publicly available for distribution and deployment. Any PAVICS Docker image can be obtained using the following command:

docker pull pavics/[image_name]

Most of the code base for PAVICS is forked from the Birdhouse Project [https://birdhouse.readthedocs.io/en/latest/index.html] which already has multiple DockerHub build processes [https://hub.docker.com/u/birdhouse]. Using our own DockerHub build gives us the advantage of having our own upstream build process for the code being modified by CRIM / Ouranos. Many of the modifications to these birdhouse components are merged upstream, but some are specific to the PAVICS project and we felt it was worthwhile to maintain an independent build process.

PAVICS installation with docker-compose

Todo

Base PAVICS installation is incomplete. The following lines refer to Phoenix instance. Need to specify which birds are needed for a bare installation of PAVICS: Phoenix, FlyingPigeon, Malleefowl, Emu, etc.

First mount or create a symlink for the datasets storage at /data.
Mount or make a symlink for the geoserver data storage so that /geoserver_data could be used (read/write) by geoserver.

To install the suite of docker images you must use docker-compose [https://docs.docker.com/compose/]. Docker-compose is a docker helper for coordinating multiple docker images at once. Docker-compose exists in most Linux software repositories but can also be installed using pip or conda. Depending on your Linux distribution and whether you have Anaconda/miniconda installed, run any of the following:

For standard libraries (Ubuntu/Debian)
sudo apt-get install docker-compose

For system-installed Python2 or Python3 (requires sudo)
sudo apt-get install -y python-dev python3-dev
sudo -H pip install docker-compose

For Anaconda/miniconda (Python2 or Python3)
conda install docker-compose

Note

Presently, the main PAVICS repo is closed to the public while it is under heavy development

After installing docker-compose, clone the PAVICS repository and navigate to the docker build recipe within PAVICS [https://github.com/Ouranosinc/PAVICS.git]:

Cloning the PAVICS repository
git clone https://github.com/Ouranosinc/PAVICS.git
cd pavics-sdi/birdhouse
Open the docker-compose.yml using a text editor
nano docker-compose.yml

Note

The docker-compose.yml contains many of the setup configurations needed to successfully launch Birdhouse. Be sure to read the Birdhouse service configuration and the Load balancing suggestions before continuing the installation.

After modifying the necessary variables in the docker-compose.yml file, simply run the following command, taking care to select an appropriate host name:

HOSTNAME='<public-ip>' bash -c 'docker-compose up -d'

This installation will run on a single server instance, but there are instructions for Load balancing.

Updating containers to the latest version

To synchronize a deployment with the latest container available on dockerhub:

Set working directory where the docker-compose.yml is located. Usually :
cd ~/PAVICS/birdhouse

Docker requires root privileges
sudo su

Pull the latest containers (container_name is optional but can limit the operation to only one container rather than applying to all containers)
HOSTNAME='<public-ip>' bash -c 'docker-compose pull [container_name]'

Stopping containers
HOSTNAME='<public-ip>' bash -c 'docker-compose stop [container_name]'

Start again containers (-d is for detached, avoid it to get all output to the command line)
HOSTNAME='<public-ip>' bash -c 'docker-compose up -d [container_name]'

Note

container_name is the name chosen in the docker-compose.yml, not the name of the docker image.

Resetting Bird services

If a Bird Service becomes unusable, the docker containers can easily be reset to default settings:

Docker requires root privileges
sudo su

Stopping and removing containers (this will flush their states)
HOSTNAME='<public-ip>' bash -c 'docker-compose down'

Start again containers (-d is for detached, avoid it to get all output to the command line)
HOSTNAME='<public-ip>' bash -c 'docker-compose up -d'

Note

Some manual tasks are required after resetting the birdhouse environment : See the manual steps under the Phoenix configuration

Restarting Bird services

If the dockers containers need to be stopped (including the docker service, if required) these steps will preserve the docker state and all configurations set via Bird Service web portals:

Docker requires root privileges
sudo su

Stopping running containers
HOSTNAME='<public-ip>' bash -c 'docker-compose stop'

Stopping the docker service
service docker stop

Restarting Bird Services (required after restarting the host vm):

Docker requires root privileges
sudo su

Starting the docker service
service docker start

Starting the birdhouse containers
HOSTNAME='<public-ip>' bash -c 'docker-compose start'

Port specification

The docker-compose.yml config file exposes ports for each docker container (left part is the public one, right part the container internal one). We try to respect the following convention:

8xxx : port usually responding for the service (The HTTP port)
28xxx: https port
38xxx: the output port (To be documented)
48xxx: the supervisor port of the container

Container xxx value:

Phoenix : 443 (With 8081 as http and 8443 as https)
Malleefowl : 091
Flyingpigeon : 093
Emu : 094
Solr : 983 (No https or output ports)
ncWMS2 : 080 (No https or output ports)
thredds : 083 (No https or output ports)
pavics-catalog : 086 (No https or output ports)
geoserver : 087 (No https or output ports)

The exception is the Pavics-frontend, which has port 3000.

To find which shell process uses a given port, use:

netstat -nlp | grep :<port #>

Todo

Update the installation and config with security changes

Integration tests

Todo

Document how to run integration tests

Load balancing

Here we’ll cover the case where pavics-sdi is installed on more than one machine and you want to balance the load across these machines. This is done with NGINX [https://nginx.org] and requires modifications to docker-compose.yml and creating a configuration file for the NGINX [https://nginx.org] server.

Modifying the docker-compose.yml

To enable load balancing, we need a proxy to redirect requests to machines according to their usage. This is done by mapping proxy ports (5XXXX) to the service ports, such as those of flyingpigeon (8093) and malleefowl (8091).

docker-compose.yml

proxy:
 image: nginx
 ports:
 - "58094:8094"
 - "58093:8093"
 - "58091:8091"
 volumes:
 - ./config/proxy/conf.d:/etc/nginx/conf.d
 - ./config/proxy/nginx.conf:/etc/nginx/nginx.conf
 restart: always

Modifying the Nginx configuration

In the config/proxy directory, there should be a file named nginx.conf. This file can be edited for example to specify the number of worker_processes. In the conf.d directory, there are a number of additional configuration file for each load balanced service, for example flyingpigeon.conf, which would look like:

config/proxy/conf.d/flyingpigeon.conf

upstream flyingpigeon {
 hash $http_machineid;
 server <server1 url>:8093;
 server <server2 url>:8093;
 server <server3 url>:8093;
}
server {
 listen 8093;
 location / {
 proxy_pass http://flyingpigeon;
 }
}

This tell the proxy, listing on port 8093, to redirect requests to servers 1, 2 or 3 according to the machineid argument passed in the request header. That is, requests with the same machineid will be sent to the same server. This is important to control since output files are not automatically visible to all servers. So if for example process A downloads a file from a remote server and process B subsets the file, both have to be run on the same machine otherwise process B won’t find the downloaded file.

Note

	Server configuration is static

	It is not possible to assign port numbers to environment variables (eg $PORT_NUMBER)

	When you change a configuration file and restart NGINX to pick up the new configuration, it implements a graceful restart. Both the old and new copies of NGINX run side-by-side for a short period of time. The old processes don’t accept any new connections and terminate once all their existing connections terminate.

User and Group management

The following guide explains the management of users, groups, and permissions for the PAVICS deployment. Permissions and group settings for users both server-side and client-side and can be configured to unique deployment specifications.

As mentioned, PAVICS is built to work within POSIX and POSIX-like systems. As such, user/group management within servers running PAVICS is synonymous with conventions for user/group management in Linux and Unix systems.

Warning

Are we clarifying both within-server permissions and permissions as set within the Birds?

Adding Users and Groups to PAVICS server

Users added to the PAVICS server for the purpose of adding data or administering Bird services may need unique access privileges. Once a user has been created with useradd [https://linux.die.net/man/8/useradd] and groups initiatialized with groupadd [https://linux.die.net/man/8/groupadd] group membership and privileges can be later specified with usermod and groupmod.

Begin by tunneling into the server:

ssh user@server

User and Group management for Bird services

Todo

How authorizations for services work (the concept)
How to grant users access to data and services

Permissions and authorizations

Twitcher?

Malleefowl?

VM configuration

For development and testing it can be useful to install pavics-sdi in a virtual machine. Here we describe the configuration for an OpenStack [https://www.openstack.org/] environment.

Data volumes

	Attach 2 openstack volumes to the vm (take note of its name looking like /dev/vdx)

	Mount them at /data and /geoserver_data using the following command:

mount /dev/vdx /[geoserver_]data

	New volumes must first be formatted using the command mkfs.ext4 /dev/vdx

Docker volume

Docker can take a lot of space to maintain all containers and the default directory /var/lib/docker on the host can rapidly run out of disk space. The easy solution is to mount a bigger volume at this position:

	Attach an openstack volume to the vm (take note of its name looking like /dev/vdx)

	Stop the docker service : service docker stop

	Mount the new volume at /var/lib/docker using the following command:

mount /dev/vdx /var/lib/docker

	Start the docker service: service docker start

Automount

To automatically mount volumes at reboot we modified the /etc/fstab file to include the attached OpenStack [https://www.openstack.org/] volumes. For example (mind the tabspaces):

/etc/fstab

LABEL=cloudimg-rootfs / ext4 defaults 0 0
/dev/vdb none swap sw,comment=cloudconfig 0 0
/dev/vdd /data ext4 defaults 0 0
/dev/vdc /var/lib/docker ext4 defaults 0 0

Hostname resolution

The virtual machine is publicly visible by using the OpenStack [https://www.openstack.org/] external IP. But this IP is not visible from inside, the internal IP must be used. To resolve this issue, create a DNS entry mapping a hostname to the external IP and edit /etc/hosts from inside the VM so that the same hostname maps the internal IP.

For example, outarde.crim.ca is resolved as 132.217.140.52 (OpenStack external IP) everywhere but from the inside of this vm the /etc/hosts config resolve this hostname to 192.168.101.91 (OpenStack internal IP).

Using the graphical interface

The frontend is composed of a base map, a tool menu and a dashboard.

The basemap works like similar online maps, with the mouse wheel allowing zoom control, while click and drag lets you move laterally on the map. At the moment, only the standard rectangular projection is supported. There are three different options for the basemap: a satellite view, and an administrative view with and without labels. Let us know which other projection and basemap would be useful for your needs.

At the bottom of the screen is a colorbar with min and max values. Use these to set the limits on the colorbar for displayed netCDF datasets.

Tool menu

The tool menu is located at the bottom left corner and looks like a pie. It opens five panels that provide methods for interacting with the map and overlayed datsets available within the PAVICS-SDI:

	Clicked Point Information
	When a netCDF dataset is displayed on the map, clicking on a grid cell will display the information stored at that point.

	A Time Series Chart
	When a netCDF dataset is displayed on the map, clicking on a grid cell will load the time series at that point and display it on a graphic.

	A Data Layer Visibility Switcher
	This panel lets user select which basemap, netCDF dataset and geospatial layer is displayed on the map.

	A Temporal Slider
	When a netCDF dataset is displayed on the map, the time slider controls which time slice is displayed. You may pick a date then go forward or backward in time by specific increments.

	Other Map Controls
	TODO

Each panel element can be used to view/inspect different types and display additional information of the active data.

Dashboard

The right hand side dashboard contains four different sections: dataset search, project workspace, process and workflow launcher and process monitoring.

	Dataset Search
	This interface is used to search for netCDF files on the PAVICS-SDI platform. It initially displays typical search categories that can be refined by loading additional search facets. Click on values for the different categories to restrict the search. Search results appear in the bottom section of the dashboard. Select the datasets of interest and add them to your workspace to visualize them or feed them into an analytical process.

Search queries or search results can be saved for later use. TODO.

	Project Workspace
	The workspace area lets you create projects in which an ensemble of files, search queries, workflows and process outputs can be stored. At the moment it is not possible for users to upload files or geospatial layers to the workspace. Let us know if this is a feature you’d like to have.

	Process and Workflows
	This is the interface where computations are launched. You may launch a workflow (see Using Workflows) or a process (see Processes). The workflow dashboard let’s you select from existing workflows that have been defined within the project or edit a new workflow from a template. Saving the workflow will trigger a validator that will warn you of syntax errors. Once the workflow has been validated, you may launch it already if there are no user defined inputs to be specified. Otherwise a form will appear to let you enter input values before launching the workflow. A notification will let you know if the workflow launched sucessfully or not.

The process interface first asks you to identify the process provider. We realize that you probably have no idea which services are offered by which provider, and for now, we suggest you search for relevant processes in this documentation, note the package they are coming from and use this as the provider. We’ll eventually flatten the process list and allow you to search from the list of processes.

Graphical User Interface

	Using the graphical interface
	Tool menu
	Dashboard

Notebooks

These notebooks demonstrates a few features of the PAVICS platform: how to access data through the OPeNDAP protocol and subset and retrieve it, how to render an image using the WMS protocol, how to compute climate indices, and perform bias correction.

If you’re unfamiliar with notebooks, note that typing TAB after an object will display a drop-down menu of the object’s attributes and methods, and that you need to hit CTRL-Enter to run a cell. You can also type ? after a function or method to display the corresponding help message.

Note that some of these notebooks need the bleeding edge version of OWSLib [https://geopython.github.io/OWSLib/] (>=0.17.1) and Birdy_ since some issues were found and fixed in the process of writing these notebooks.

Advanced climate data analysis

	Spatial analogues

Spatial analogues

Spatial analogues are maps showing which areas have a present-day climate that is
analogous to the future climate of a given place. This type of map can be
useful for climate adaptation to see how well regions are coping today under specific climate conditions. For example, officials from a city located in a temperate region that may be expecting more heatwaves in the future can learn from the experience of another city where heatwaves are a common occurrence, leading to more proactive intervention plans to better deal with new climate conditions.

Spatial analogues are estimated by comparing the distribution of climate indices
computed at the target location over the future period with the distribution of
the same climate indices computed over a reference period for multiple candidate regions. A number of methodological choices thus enter the computation:

	Climate indices of interest,

	Metrics measuring the difference between both distributions,

	Reference data from which to compute the base indices,

	A future climate scenario to compute the target indices.

The climate indices chosen to compute the spatial analogues are usually annual values
of indices relevant to the intended audience of these maps. For example, in the case of the wine grape industry, the climate indices examined could
include the length of the frost-free season, growing degree-days, annual winter minimum
temperature andand annual number of very cold days [Roy2017].

The flyingpigeon.processes.SpatialAnalogProcess offers six
distance metrics: standard euclidean distance, nearest neighbor,
Zech-Aslan energy distance, Kolmogorov-Smirnov statistic,Friedman-Rafsky runs
statistics and the Kullback-Leibler divergence. A description and reference for
each distance metric is given in flyingpigeon.dissimilarity and based
on [Grenier2013].

The reference data set should cover the target site in order to perform
validation tests, and a large area around it. Global or continental scale datasets
are generally used, but the spatial resolution should be high enough for users to be
able to recognize climate features they are familiar with.

Different future climate scenarios from climate models can be used to compute the
target distribution over the future period. Usually the raw model outputs are
bias-corrected with the observation dataset. This is done to avoid discrepancies
that would be introduced by systematic model errors. One way to validate the results
is to compute the spatial analog using the simulation over the historical period. The
best analog region should thus cover the target site.

The WPS process automatically extracts the target series from a netCDF file using
geographical coordinates and the names of the climate indices (the name of the
climate indices should be the same for both netCDF files). It also allows users
to specify the period over which the distributions should be compared, for both
the target and candidate datasets.

An accompanying process flyingpigeon.processes.MapSpatialAnalogProcess
can then be called to create a graphic displaying the dissimilarity value.
An example of such graphic is shown below, with the target location indicated
by a white marker.

[image: Example of spatial analog graphic.]
A map of the dissimilarity metric computed from mean annual precipitation and
temperature values in Montreal over the period 1970-1990.

flyingpigeon.processes.SpatialAnalogProcess

flyingpigeon.processes.MapSpatialAnalogProcess

References

	Roy2017

	Roy, P., Grenier, P., Barriault, E. et al. Climatic Change (2017) 143: 43. doi:10.1007/s10584-017-1960-x

	Grenier2013

	Grenier, P., A.-C. Parent, D. Huard, F. Anctil, and D. Chaumont, 2013: An assessment of six dissimilarity metrics for climate analogs. J. Appl. Meteor. Climatol., 52, 733–752, doi:10.1175/JAMC-D-12-0170.1

Basic climate data analysis

The following processes concern basic climate data analysis, methods for formatting data to examine a
specific region or time interval. They are provided by Flyingpigeon’s
subset processes [https://flyingpigeon.readthedocs.io/en/latest/processes_api.html#subset-processes-api].

Spatial and temporal subsetting

	SubsetWFSPolygonProcess [https://flyingpigeon.readthedocs.io/en/latest/processes_api.html#flyingpigeon.processes.wps_subset_wfs_polygon.SubsetWFSPolygonProcess] Subset over a contour provided by a WFS service.

	SubsetBboxProcess [https://flyingpigeon.readthedocs.io/en/latest/processes_api.html#flyingpigeon.processes.wps_subset_bbox.SubsetBboxProcess] Subset over a latitude-longitude bounding box.

	SubsetcontinentProcess [https://flyingpigeon.readthedocs.io/en/latest/processes_api.html#flyingpigeon.processes.wps_subset_continents.SubsetcontinentProcess] Subset over one or more continent.

	SubsetcountryProcess [https://flyingpigeon.readthedocs.io/en/latest/processes_api.html#flyingpigeon.processes.wps_subset_countries.SubsetcountryProcess] Subset over one or more country.

	PointinspectionProcess [https://flyingpigeon.readthedocs.io/en/latest/processes_api.html#flyingpigeon.processes.wps_pointinspection.PointinspectionProcess] Extract data over one or more point coordinates.

Bias correction

We’ve temporarily retired our bias correction algorithm (KDDM) because it came with heavy dependencies that complicated
installation and deployment. We’re currently working on implementing bias correction algorithms to xclim, which will
then be offered as a WPS service in the platform sometimes this fall.

Data handling

Impacts and adaptation

The following are processes for analyzing impact and adaptation metrics for the purpose of tracking biodiversity health.

Processes

PAVICS offers a growing list of computational services through the Web Processing Services (WPS) standard. Each individual service is hosted by a thematic server. For example, the Finch server specializes in climate indicators, while the Raven server focuses on hydrological modeling and time-series analysis. A typical server will thus host a few dozens or more individual processes that can be combined into workflows. Indeed, each service typically operates on netCDF inputs and also yields netCDF outputs, making it possible to chain together multiple processes.

You’ll find below links to services or service providers organized by topics. You may also use the Search bar, which will search through the index for all the main thematic servers.

	Basic climate data analysis
	Spatial and temporal subsetting

	Climate indicators

	Advanced climate data analysis
	Spatial analogues

	Bias correction

Todo

Take a systematic approach and link to other birds and libraries through intersphinx

Climate indicators

PAVICS now relies on Finch to provide processes for climate indicators (it previously used FlyingPigeon, which itself used ICCLIM indicators wrapped using ocgis). The full list of available processes can be found here.

Data administration

SOLR

The following processes are used by platform admins to interact with the SOLR database.

Visualization

Workflows

Provenance

The code base is divided into multiple components each having its own release schedule. Each component is stored on a
individual github repository, where every change of the master branch triggers a test suite run and a build of the
corresponding docker image (available on DockerHub [https://hub.docker.com/]). Development occurs in code branches, and modifications are only
merged after code reviews have been completed and all tests passed. Official releases are tagged after significant code
changes and are authorized by ?. The project documentation is entirely contained within the various sections of this
document.

pavics-sdi is relying on a number of different packages developed by other teams. Minor pavics releases will be created following major releases of these critical third party packages if they do not coincide with a major internal release. Package whose upgrade whose trigger a minor pavics release include ocgis, flyingpigeon and malleefowl.

Ouranos deployment

A pre-release version is deployed on an experimental server and integration testing is performed to make sure the platform is in working order. If everything is in order, the pre-release version becomes the release version and is deployed on the pavics server.

Todo

Review by CRIM.

 Preliminary bit of code:

from owslib.wps import WebProcessingService
pavics = 'https://pavics.ouranos.ca/twitcher/ows/proxy/flyingpigeon'
headers = credentials()
wps = WebProcessingService(pavics, headers=headers, verify=False)

Bias correction

Using a bias correction algorithm from the console:

inputs = [('obs':'Enter observation dataset'), ('ref': 'Enter reference simulated dataset'), ('fut': 'Enter future simulated dataset')]
wps.execute('kddm_bc', inputs, output='output_netcdf_fut')

Climate indices

Compute climate indices from a simulated time series:

inputs = [('resource':),]
wps.execute('icclim_TXx', inputs, output='output_netcdf')

Spatial subsetting

Extract a portion of a netCDF file over a country:

inputs = [('region': 'CAN'), ('resource': '')]
wps.execute('subset_countries', inputs, output='ncout')

Average over a polygon served through WFS:

inputs = [('resource':''), ('typename':''), ('featureids':'')]
wps.execute('averager_WFS', inputs, output='output')

Note that in this last case, the process returns a JSON file storing the URL of the output file, rather than returning
the file itself. This is an alternative pattern we are experimenting with to facilitate the handling of multifile outputs.

Tutorials

	Working with Web Processing Service with Python and OWSLib

Todo

Write tutorial on creating and launching workflows

Searching for data

The first step in a climate analysis is to gather the data to be analyzed.

Todo

Describe how to use the UI to add data to the workspace.

APIs

Data on ESGF nodes can be searched using the ESGF Search API:

https://github.com/ESGF/esgf.github.io/wiki/ESGF_Search_REST_API

PAVICS has its own data catalog that mimics the ESGF catalog and a WPS
is provided for combining PAVICS search with ESGF search.

Discovering facets

pending

Working with Web Processing Service with Python and OWSLib

Basic WPS interaction is described in the OWSLib documentation [https://geopython.github.io/OWSLib/#wps]

We suggest using OWSLib [https://geopython.github.io/OWSLib/] 0.17.1 and up.

Getting a list of processes:

from owslib.wps import WebProcessingService
wps = WebProcessingService('http://localhost:8081/pywps')
wps.getcapabilities()
processes = [x.identifier for x in wps.processes]

Inputs identifiers:

process = wps.describeprocess('some_process')
inputs = [x.identifier for x in process.dataInputs]

Execute process (synchronous):

myinputs = [('some_parameter', 'some_value')]
execution = wps.execute('some_process', myinputs, async=False)
execution.getStatus()
execution.statusLocation # useful for accessing the xml status file
execution.processOutputs[0].data

Execute process with file inputs/outputs (asynchronous):

from owslib.wps import ComplexDataInput
myinputs = [
 ('some_file_input', ComplexDataInput('http://localhost/file.nc')),
 ('some_string_parameter', 'some_value'),
]
execution = wps.execute('some_process', myinputs, output='OUTPUT')
while execution.status != 'ProcessSucceeded':
 execution.checkStatus(sleepSecs=1)
 if execution.status == 'ProcessFailed':
 break
execution.processOutputs[0].reference

On a local flyingpigeon, the results can also be found in:

~/birdhouse/var/lib/pywps/outputs/

If the WPS is protected behind magpie:

import requests
credentials = dict(provider_name='ziggurat',
 user_name='magpie_username',
 password='magpie_password')
s = requests.Session()
response = s.post('{0}/signin'.format(https://localhost/magpie), data=credentials, verify=False)
auth_tkt = response.cookies.get('auth_tkt', domain='localhost.local')
headers = dict(Cookie='auth_tkt={0}'.format(auth_tkt))
wps = WebProcessingService('https://localhost/twitcher/ows/proxy/wpsandbox/pywps', headers=headers, verify=False)

Examples

Running sequential tasks

This is the simplest workflow one can think of, it simply consists in running process A and using its output to feed process B. To make the examples more concrete, let’s imagine a random_word process that takes as input n the number of random words to return, and returns text, a string joining all these words separated by a space. Our second process count_characters will return n the number of a given character (a, b, c) in input text. A workflow to generate 10 random words and count the number of e would then look like this:

{
 "name" : "count_e",
 "tasks": [
 {
 "name": "create_sentence",
 "url": "http://myserver.org:8090/wps",
 "identifier": "random_word",
 "inputs": {
 "n": 10,
 }

 },
 {
 "name": "count_letter_e",
 "url": "http://myserver.org:8090/wps",
 "identifier": "count_characters"
 "linked_inputs": {
 "text": {
 "task": "create_sentence",
 "output": "text",
 }
 },
 "inputs": {
 "char": "e"
 }
 },
]
}

When the count_e workflow is launched, the first task is executed using n=10. Then the second task is executed using char=e, and the text value taken from the text output of the create_sentence task, defined in linked_inputs by an :json:object:`Input_description` object.

Using Workflows

	Workflow vocabulary

	Examples
	Running sequential tasks

	Workflow schema

Workflow schema

This is the json schema describing workflows. It is defined in malleefowl/custom_workflow.py

Workflow vocabulary

Creating a climate product usually involves multiple steps:

	Selecting datasets

	Subsetting the data to a specific region and period

	Either regridding the multiple datasets to a common grid or computing spatial averages

	Computing climate indices

	Create graphs or tables from the results

Typically each step would involve calling one or many individual processes, and it’s convenient to combine these steps into a workflow. Here we use workflow to mean a formal description of the logical organization and ordering of individual processes. The workflow logic is encapsulated in a json file using a vocabulary (called a schema [http://json-schema.org]) that we describe below.

Workflows are built by combining Workflow_task into Group_of_task. These groups are then executed sequentially or in parallel, as indicated in the Workflow field (see the Workflow schema).

Note

Either tasks or parallel_groups must be specified.

Note

	Allow to plan the execution of a task after another one without feeding any output of the previous one to an input.

Note

The workflow executor is able obviously to assign a reference output to an expected reference input and a data output to an expected data input but will also be able to read the value of a reference output to send the expected data input. However, a data output linked to an expected reference input will yield an exception.

Tutorials

	Wordcounter Example

External Tutorials

	PyWPS 4.0.0 Slides [http://www.slideshare.net/jachym/pywps400]

	PyWPS Documentation [https://pywps.readthedocs.io/en/master/process.html]

	Emu Example with Docker [https://emu.readthedocs.io/en/latest/tutorial.html#tutorial]

	Phoenix Tutorial

	Flyingpigeon Tutorial [http://flyingpigeon.readthedocs.io/en/latest/tutorials/index.html]

	Example with Birdy WPS command line tool

Using Let’s encrypt to generate a certificte

One can use the Let’s Encrypt [https://letsencrypt.org/] service to generate automatically
a valid x509 certificate for web-services.

Debian/Ubuntu

Instructions on: https://certbot.eff.org/#ubuntutyakkety-nginx

Enable certbot ubuntu repo:

$ sudo apt-get update
$ sudo apt-get install software-properties-common
$ sudo add-apt-repository ppa:certbot/certbot
$ sudo apt-get update

Install certbot for nginx:

$ sudo apt-get install python-certbot-nginx

Links

	https://letsencrypt.org/

Wordcounter Example

Todo

The WPS tutorial needs to be updated.

In the following we show an example with a Word Counter function which is enabled as a web-service using WPS.

	Defining a Word Counter function

	WPS definition of Word Counter

	Chaining WPS processes

	WPS process implementation with PyWPS

	Using WPS

	Calling Word Counter with Birdy

Defining a Word Counter function

In the following example we will use the Word Counter function:

def count_words(file):
 """Calculates number of words in text document.
 Returns JSON document with occurrences of each word.
 """
 return json_doc

This Python function has the following parts:

	a name or identifier: count_words

	a description: Calculates number of words …

	input parameters: file (mime type text/plain)

	output parameters: json_doc (mime type application/json)

Now, we would like to run this function remotely using a simple web-service.
To get this web-service we can use WPS. The function parts (name, parameters) are all we need to know to define a WPS process.

WPS definition of Word Counter

To add a new proccess you need to define the input and output parameters. For the Word Counter process this looks like the following.

[image: ../_images/WpsInOut.png]
Here is another example for a Text Generator process. We will use it later for chaining processes.

[image: ../_images/WpsTextGenerator.png]
There are two types of input/output parameters:

	Literal Parameters (green): these are simple data types like integer, boolean, string, …

	Complex Parameters (yellow): these are documents with a mime-type (xml, cvs, jpg, netcdf, …) provided as URL or directly.

An input/output parameter has:

	a name or identifier

	a descriptive title

	an abstract giving a description of the parameter

	multiplicity … how often can this parameter occur: optional, once, many …

	in case of literal parameters a list of allowed values.

For more details see the following WPS Tutorial [http://wiki.ieee-earth.org/Documents/GEOSS_Tutorials/GEOSS_Provider_Tutorials/Web_Processing_Service_Tutorial_for_GEOSS_Providers/Section_2:_Introduction_to_WPS].

Chaining WPS processes

If you know the input/output parameters of processes you can chain processes. For example we will chain a Text Generator process to
our Word Counter process.

[image: ../_images/WpsChain.png]
The Text document output of the Text Generator process becomes the input of Word Counter process.

You can chain process manually by calling them one after the other. The WPS specification allows you to also chain process with a single WPS request.
To get even more flexibility (using if-clauses, loops, monitoring …) you can also use a workflow engine (Taverna, VisTrails, Dispel4py, …).

You will find more details about chaining in the GeoProcessing document [http://geoprocessing.info/wpsdoc/Concepts#chaining]
and the GeoServer Tutorial [http://geoserver.geo-solutions.it/edu/en/wps/chaining_processes.html].

WPS process implementation with PyWPS

There are several WPS implementations available (GeoServer, COWS, …). In birdhouse, we use the Python implementation PyWPS.
In PyWPS the Word Counter process could look like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	from pywps.Process import WPSProcess
class Process(WPSProcess):

 def __init__(self):
 ##
 # Process initialization
 WPSProcess.__init__(self,
 identifier = "wordcount",
 title="Word Counter",
 abstract="""Counts words in text document.""",
)

 ##
 # Adding process inputs

 self.text = self.addComplexInput(identifier="text",
 title="Text Document",
 formats = [{'mimeType':'text/plain'}])

 ##
 # Adding process outputs

 self.output = self.addComplexOutput(identifier = "output",
 title="Word count result")

 ##
 # Execution part of the process
 def execute(self):

 # count words and save result
 self.output.setValue(count_words(self.text.getValue()))

 return

You can see the definition of the input and output parameters and the execute() method where the real count_words() function is called. You will find more details about implementing a WPS process in the PyWPS Tutorial [http://pywps.org/docs/].

Using WPS

A WPS service has three operations:

	GetCapabilities: which processes are available

	DescribeProcess: what are the input and output parameters of a specific process

	Execute: run a process with parameters.

The following diagram shows these operations:

[image: ../_images/wps_usage.png]
To call these process one can use simple HTTP request with key/value pairs:

	GetCapabilites request:

http://localhost:8094/wps?&request=GetCapabilities&service=WPS&version=1.0.0

	DescribeProcess request for wordcount process:

http://localhost:8094/wps?&request=DescribeProcess&service=WPS&version=1.0.0&identifier=wordcount

	Exceute request:

http://localhost:8094/wps?request=Execute&service=WPS&version=1.0.0&identifier=wordcount
 &DataInputs=text=http://birdhouse.readthedocs.org/en/latest/index.html

A process can be run synchronously or asynchronously:

	sync: You make a HTTP request and you need to wait until the request returns with a response (or timeout). This is only useful for short-running processes.

	async: You make a HTTP request and you get immediately a response document. This document gives you a link to a status document which you need to poll until the process has finished.

Processes can be run with simple HTTP get-requests (as shown above) and also with HTTP post-requests. In the later case XML documents are exchanged with the
communication details (process, parameters, …).

For more details see the following WPS Tutorial [http://wiki.ieee-earth.org/Documents/GEOSS_Tutorials/GEOSS_Provider_Tutorials/Web_Processing_Service_Tutorial_for_GEOSS_Providers/Section_2:_Introduction_to_WPS].

There are also some IPython notebooks [http://nbviewer.jupyter.org/github/bird-house/birdhouse-docs/tree/master/notebooks/tutorial/] which show the usage of WPS.

Calling Word Counter with Birdy

Now, we are using Birdy [http://birdy.readthedocs.io/en/latest/] wps command line client to access the wordcount process.

Which proccess are available (GetCapabilities):

$ birdy -h
usage: birdy [-h] <command> [<args>]

optional arguments:
 -h, --help show this help message and exit

command:
 List of available commands (wps processes)

 {chomsky,helloworld,inout,ultimatequestionprocess,wordcount}
 Run "birdy <command> -h" to get additional help.

What input and output parameters does wordcount have (DescribeProcess):

$ birdy wordcount -h
usage: birdy wordcount [-h] --text [TEXT] [--output [{output} [{output} ...]]]

optional arguments:
 -h, --help show this help message and exit
 --text [TEXT] Text document: URL of text document, mime
 types=text/plain
 --output [{output} [{output} ...]]
 Output: output=Word count result, mime
 types=text/plain (default: all outputs)

Run wordcount with a text document (Execute):

$ birdy wordcount --text http://birdhouse.readthedocs.org/en/latest/index.html
Execution status: ProcessAccepted
Execution status: ProcessSucceeded
Output:
output=http://localhost:8090/wpsoutputs/emu/output-37445d08-cf0f-11e4-ab7e-68f72837e1b4.txt

Footnotes

	1

	What is WPS? - http://geoprocessing.info/wpsdoc/Concepts#what

 _images/wps_chain.png
Input

WPS
Process A

Output / Input

WPS
Process B

Output / Input

WPS
Process C

Output

_images/wps_usage.png
Requestor

WPS

etCapabilities

Service metadata

describeProcess

H Process description
g8 ORI

Execute

_static/file.png

_images/supervisor-monitor.png
Supervisor.....

Page reffeshed at Fri Mar 13 17:12:25 2015

state D

ription
pid 28435, uptime 0:00.05
pid 28432, uptime 00005
pid 28440, uptime 0:00.05
pid 28438, uptime 00005
pid 28431, uptime 00005
pid 28436, uptime 00005
pid 28434, uptime 00005
PId 28437, uptime 00005

pid 28433, uptime 0:00:05

Action
Restart
Restart
Restart
Restart
Restart
Restart
Restart
Restart

Restart

_images/wps_adamsteer.png
Code defining

functionality, WPS

workflows,
processing tasks

N A

_images/process_schema_1.png
Parameter

@—» Execution —

_images/spatial_analog_example.png
Spatial Analog Example

nav.xhtml

 Table of Contents

 		
 Birdhouse

 		
 Overview

 		
 Documentation structure

 		
 What is WPS?

 		
 WPS Use Case

 		
 birdhouse framework

 		
 Framework structure

 		
 Client Side Components

 		
 Server Side Components

 		
 Files and Folders

 		
 Project examples

 		
 PAVICS

 		
 Backend - PAVICS Node

 		
 Backend - PAVICS Node

 		
 COPERNICUS

 		
 OGC-Testbeds

 		
 A2C2

 		
 Guidelines

 		
 Installation Guidelines

 		
 Requirements

 		
 Installing from source

 		
 Nginx, gunicorn and supervisor

 		
 Using birdhouse with Docker

 		
 Administrator Guidelines

 		
 Set up a birdhouse ecosystem server

 		
 Backups

 		
 Asking for Support

 		
 Developer Guidelines

 		
 Code of Conduct

 		
 Contribution Workflow

 		
 Writing a WPS process

 		
 Writing functions

 		
 Writing tests

 		
 Writing documentation

 		
 Code Style

 		
 Environment with conda

 		
 Make your own Bird

 		
 Release Notes and Versions:

 		
 User Guidelines

 		
 Command-line

 		
 Phoenix Web App

 		
 Python Library

 		
 Ideas

 		
 PyWPS Profiles

 		
 Motivation

 		
 Python Mixins

 		
 Python Decorators

 		
 Simple Alternative: Shared Profile Module/Class

 		
 Communication

 		
 Chat-room

 		
 Meetings

 		
 Blog-post

 		
 Newsletter

 		
 Wiki

 		
 Publications

 		
 Talks and articles

 		
 References

 		
 Release Notes

 		
 Oxford (April 2020, v0.9.0)

 		
 Bucharest (October 2019, v0.8.0)

 		
 San Francisco (May 2019, v0.7.0)

 		
 Washington (December 2018, v0.6.1)

 		
 Dar es Salaam (September 2018, v0.6.0)

 		
 Montréal (March 2018, v0.5.0)

 		
 Bonn (August 2016, v0.4.0)

 		
 Paris (October 2015, v0.3.0)

 		
 Paris (September 2014, v0.2.0)

 		
 Helsinki (May 2014, v0.1.2)

 		
 Vienna (April 2014, v0.1.1)

 		
 Hamburg (December 2013, v0.1.0)

 		
 License

 		
 Glossary

 		
 Useful Links

 		
 WPS Documentation

 		
 WPS Software

 		
 WMS Software

 		
 Scientific Workflow Tools

 		
 Scientific Python

 		
 Python in Climate Science

 		
 Python Web Frameworks and Utils

 		
 Example WPS Services

 		
 Alternatives to WPS

 		
 Related Projects

 		
 References

_images/PAVICS_data_overlay.png
2005-07-11
RESET
QO BVNIS
O BVNIS i
QO BVN2S
BV_N3_S
QO BVN4S

) RUNSS

Mouse Click Mode
Grid Point Values
QO Region Selection

Toggle Full Screen Mode

12:00:00

Day(s)

Very Slow (10 seco

_images/PAVICS_overview.png
€ Layer Switcher = © Temporal Slider - & search Datasets (]
-]] =]

DATASETS

REGIONS BASE MAPS

BV_N7_S

BV_N8_S
RS2_0K79000_PK698379_DK627315_FQ9
canada_admin_boundaries

Countries of the World
® Map Controls

@® Grid Point Valu
QO Region Selection

Full

_images/Documentation_aggrgation.png
uckie cutter

Dosumentation

A

WPS Services -
Documentations

Process
descriptions
User guides
Tutorials
Installation

Birdhouse Overview

General Documentation
Introduction to principles
Projects

Administration guides
Developer guides
Tutorials

Client components -

Utilities -

Documentations

Documentations

Descriptions
User guides
Tutorials
Installation

Descriptions
User guides
Tutorials
Installation

_images/PAVICS_architecture.png
<creates project,
assigns permissions,
sets system parameters,
monitor system health,
manages services.
access data>

Hesurc

professional

Middleware - CRIM
Cloud, Compute
Canada cloud

Research platform - Ouranos baremetal, CANARIE DAIR, CRIM Cloud

Advanced workflow tools

Data semantic and

| p—

PAVICS collaborative and admin tools

PAVICS Earth sciences tools

<inspect service,
manipulate maps.

send process request,
build workflows>

es (OWS) - Ouranos baremetal, CRIM Cloud

—>

<run workflows,

Computation - Ouranos baremetal, Compute Canada, CRIM Cloud (load balanced)

Tun notebook,

search data,

«-iew maps and araphs>

Power user

Services - Compute
Canada cloud.
CANARIE DAIR, CRIM
Cloud, private
commercial cloud

iy

Services %

==l

Earih systems services

Wind related

Ciimate
indicators

diagnostics

Earth Observation
data support

Ve ||

[

=E) (reoneams)

7]

ComputeCanada

Clusters

i

Smart Data -

s Ouranos
baremetal,

Workflows CANARIE DAIR,
CRIM Cloud

Metadata 8

Logs

Data access -
On all sites as required

Big Data -
Compute Canada,
Ouranos

U baremetal, CRIM

Cloud
Model outputs

S

Earth Observation
data

_images/WPS_principe.png
high performance environment

Server - Side

Cloud
Services

Data Analyses

Data

Result Archive

(low internet bandwidth)

Submit Job

Monitor

Client - Side

Expert
User

_static/plus.png

_static/minus.png

_images/atom-pep8.png
Settings

Convert All Errors To Warnings

Ignore Error Codes
For st of code visi http//pep8.readthedocs org/en/latest/intro htmiterror-codes

F401,E462

Max Line Length
120

Pep8 Executable Path

_images/WpsTextGenerator.png
Generate Text
Document

Text Document

_images/WsgiApp.png
Monitor (HTTP)

ot

Control

et
Example:
(3) pvwes n e
o aid Phoeni

_images/birdhouse-framework.png
WPS
Pelican

WPS
Malleefowl

WPS
Flyingpigeon
WPS
Emu WPS
Blackswan
WPS
ESMValTool [\ypg
Finch
WPS
Raven WPS
Kingfisher
WPS
Hummingbird
Result

Archive

_images/WpsChain.png
Generate Text
Document

Count Words

JSON
Document

_images/WpsInOut.png
Text Document

JSON Document.

_images/phoenix_services.png
s

sovces

so®

i®

frg

_images/phoenix_setting.png

_images/phoenix_register.png

_images/phoenix_register_thredds.png
Register New Service

Service URL *
hitp://192.168.101.179:8083/thredds/catalog htmi
Add URL of service (WPS, Thredds, ...). Example: hitp:/localhost:8091wps, http://localnost/thredds/catalog. xmi
Service Name
Thredds
An optional service name.
Service Type *

© Web Processing Service
Thredds Catalog

_images/phoenix_username.png

_images/phoenix_solr.png
Thredds Services.

Parameters

Parameters

Maxrecords

[+

Maximum number of documents to index. Default: -1 (no limit)

Depth

‘ 100

Maximum depth level for crawiing Thredds catalogs. Default: 2

_images/phoenix_thredds_activate.png
Parameters

_images/module_chain.png
. Temporar file or memory value

___~Function (output is NOT obligatory for final result)

__~Function (output is obligatory for final result)

./.
‘/‘\

‘/.

_images/phoenix_login.png

_images/filelocations.png
Resources | s Cache

fetch if Temporary
' external . . Files

